Skip to main content

A Novel Method for Analyzing Dynamic Complexity of EEG Signals Using Symbolic Entropy Measurement

  • Conference paper
Advances in Neural Networks – ISNN 2009 (ISNN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5553))

Included in the following conference series:

  • 2320 Accesses

Abstract

Symbolic entropy is proposed to measure the complexity of the electroencephalogram (EEG) signal under different brain functional states. The EEG data recorded from different subjects were investigated and compared with both approximate entropy (ApEn) and Shannon entropy. The experimental results show that the proposed method can effectively distinguish the complexities of two groups. The experimental results provide preliminary support for the notion that the complex nonlinear nature of brain electrical activity may be the result of isolation or impairment of the neural information transmission within the brain. It is concluded that symbolic entropy serves a better measure for EEG signals and other medical signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freeman, W.J.: Simulation of Chaotic EEG Patterns with a Dynamic Model of the Olfactory System. Biological Cybernetics 56, 139–150 (1987)

    Article  Google Scholar 

  2. Freeman, W.J.: Tutorial on Neurobiology: Form Single Neurons to Brain Chaos. Int. J. Bifurcation and Chaos 2, 451–482 (1992)

    Article  MATH  Google Scholar 

  3. Zhang, T., Turner, D.L.: A Visuomotor Reaction Time Task Increases the Irregularity and Complexity of Inspiratory Airflow Pattern in Man. Neuroscience Lett. 297, 41–44 (2001)

    Article  Google Scholar 

  4. Gallez, D.: Predictability of Human EEG: a Dynamical Approach. Biological Cybernetics 64, 381–391 (1991)

    Article  Google Scholar 

  5. Roschke, J.: The Dimensionality of Human’s Electroencephalogram during Sleep. Biological Cybernetics 64(91), 307–313

    Google Scholar 

  6. Werner, L.: Dimensional Analysis of the Human EEG and Intelligence. Neuroscience Letters 143, 10–14 (1992)

    Article  Google Scholar 

  7. Zhang, T., Johns, E.J.: Chaotic Characteristics of Renal Nerve Peak Interval Sequence in Norm Intensive and Hypertensive Rats. Clin. Exp. Pharmacol Physiol. 25, 896–903 (1998)

    Article  Google Scholar 

  8. Pincus, S.M.: Approximate Entropy as a Measure of System Complexity. Proc. Natl. Acad. Sci. 88, 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pincus, S.M.: Quantification of Evolution from Order to Randomness in Practical Time Series Analysis. Methods Enzymol 240, 68–89 (1994)

    Article  Google Scholar 

  10. Pincus, S.M.: Approximate Entropy (ApEn) as a Complexity Measure. Chaos 5, 110–117 (1995)

    Article  Google Scholar 

  11. Joydeep, B.: Complexity Analysis of Spontaneous EEG. Acta Neurobiol. Exp. 60, 495–501 (2000)

    Google Scholar 

  12. Cysarz, D., et al.: Irregularities and Nonlinearities in Fetal Heart Period Time Series in the Course of Pregnancy. Herzschr Elektrophys 11, 179–183 (2000)

    Article  Google Scholar 

  13. Cysarz, D., et al.: Entropies of Short Binary Sequences in Heart Period Dynamics. Am. J. Physiol. Heart Circ. Physiol. 278, H2163–H2172 (2000)

    Google Scholar 

  14. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos-an Introduction to Dynamical Systems. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  15. Francis, C.M.L., Chi, K.T.: Co-Existence of Chaos-Based Communication Systems and Conventional Spread-Spectrum, Communication Systems. In: International Symposium on Nonlinear Theory and its Applications, vol. 7, pp. 107–110 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, L., Yu, J., Beadle, P.J. (2009). A Novel Method for Analyzing Dynamic Complexity of EEG Signals Using Symbolic Entropy Measurement. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01513-7_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01513-7_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01512-0

  • Online ISBN: 978-3-642-01513-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics