Advertisement

Concept Lattices in L-Rough Sets

  • Xueyou Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5552)

Abstract

In this paper, two L-rough approximation operators are defined by an arbitrary L-relation, some of their properties and their relation to Galois connection in Formal Concept Analysis are investigated. The generalizations of the property oriented concept lattice and the object oriented concept lattice are obtained in L-rough sets.

Keywords

Rough set L-set Formal concept analysis The object (property) oriented concept lattice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bĕlohlávek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer, New York (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bĕlohlávek, R.: Concept Lattices and Order in Fuzzy Logic. Annals of Pure and Applied Logic 128, 277–298 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, X.Y., Li, Q.G.: Construction of Rough Approximations in Fuzzy Setting. Fuzzy Sets and Systems 158, 2641–2653 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, X.Y., Li, Q.G.: Formal Topology, Chu space and approximable concept, http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-162/
  5. 5.
    Chen, X.Y., Li, Q.G., Deng, Z.K.: Chu Space and Approximable Concept Lattice in Fuzzy Setting. In: FUZZ-IEEE 2007, The IEEE International Conference on Fuzzy Systems, London, July 24-26 (2007)Google Scholar
  6. 6.
    Chen, X.Y., Li, Q.G., Long, F., Deng, Z.K.: Generalizations of Approximation Concept Lattice. In: Yahia, S.B., Nguifo, E.M., Belohlavek, R. (eds.) CLA 2006. LNCS, vol. 4923, pp. 107–122. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Düntsch, I., Gediga, G.: Approximation Operators in Qualitative Data Analysis. In: de Swart, H., Orlowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Application of Relational Structures as Knowledge Instruments, pp. 216–233. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Ganter, B., Wille, R.: Formal Concept Analysis, Mathematcical Foundations. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gediga, G., Düntsch, I.: Modal-Style Operators in Qualitative Data Analysis. In: Proceedings of the 2002 IEEE international Conference on Data Mining, pp. 155–162 (2002)Google Scholar
  10. 10.
    Goguen, J.: L-fuzzy Sets. J. Math. Anal. Appl. 18, 145–174 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lin, T.Y.: Topological and Fuzzy Rough Sets. In: Slowinski, R. (ed.) Decision Support by Experience-Application of the Rough Sets Theory, pp. 287–304. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  12. 12.
    Morsi, N.N., Yakout, M.M.: Axiomatics for Fuzzy Fough Set. Fuzzy Sets and Systems 100, 327–342 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Nanda, S.: Fuzzy Rough Sets. Fuzzy Sets and Systems 45, 157–160 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pawlak, Z.: Rough Sets. International Journal of Computer and Information Science 11, 341–356 (1982)CrossRefzbMATHGoogle Scholar
  15. 15.
    Radzikowska, A.M., Kerre, E.E.: On L-Fuzzy Rough Set. In: Rutkowski, L., et al. (eds.) ICAISC 2004. LNCS, vol. 3070, pp. 526–531. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Shao, M.W., Liu, M., Zhang, W.X.: Set Approximations in Fuzzy Formal Concept Analysis. Fuzzy Sets and Systems 158(23), 2627–2640 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wille, R.: Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)CrossRefGoogle Scholar
  18. 18.
    Yao, Y.Y.: Constructive and Algebraic Methods of the Theory of Rough Sets. Information Science 109, 21–47 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Yao, Y.Y.: Concept Lattices in Rough Set Theory. In: Dick, S., Kurgan, L., Pedrycz, W., Reformat, M. (eds.) Proceedings of 2004 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS 2004), IEEE Catalog Number: 04TH8736 27-30, pp. 796–801 (2004)Google Scholar
  20. 20.
    Yao, Y.Y.: A Comparative Study of Formal Concept Analysis and Rough Set Theory in Data Analysis. In: Tsumoto, S., Slowinski, R., Jan Komorowski, H., Grzymala-Busse, J.W. (eds.) RSCTC 2004. LNCS, vol. 3066, pp. 59–68. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Xueyou Chen
    • 1
  1. 1.School of MathematicsShandong University of TechnologyZiboChina

Personalised recommendations