Classification of Single-Trial EEG Based on Support Vector Clustering during Finger Movement

  • Boyu Wang
  • Feng Wan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5552)


Classification of electroencephalogram (EEG) is an important and challenging issue for brain computer interface (BCI) system. In this paper, an algorithm based on common spatial subspace decomposition (CSSD) and support vector clustering (SVC) is proposed to classify single-trial EEG recording during left or right finger movement. The algorithm is tested by the dataset IV of “BCI competition 2003”, and the experimental result shows the proposed method, only using bereitschaftspotential (BP), rather than both BP and event-related desynchronization (ERD), has higher classification accuracy than the best one reported in the competition.


Support vector clustering (SVC) Common spatial subspace decomposition (CSSD) Electroencephalogram (EEG) Brain computer interface (BCI) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-Computer Interface for Communication and Control. Journal of Clinical Neurophysiology 113, 767–791 (2002)CrossRefGoogle Scholar
  2. 2.
    Blankertz, B., et al.: The BCI Competition III: Validating Alternative Approaches to Actual BCI Problems. IEEE Transaction on Neural System and Rehabilitation Engineering 14, 153–159 (2006)CrossRefGoogle Scholar
  3. 3.
    Lehtonen, J., Jylänki, P., Kauhanen, L., Sams, M.: Online Classification of the Single EEG Trials During Finger Movements. IEEE Transactions on Biomedical Engineering 55(2), 713–720 (2008)CrossRefGoogle Scholar
  4. 4.
    Wang, Y., et al.: BCI Competition 2003-Data Set IV: An algorithm based on CSSD and FDA for Classifying Single-Trial EEG. IEEE Transactions on Biomedical Engineering 51(6), 1081–1086 (2004)CrossRefGoogle Scholar
  5. 5.
    Li, Y., Gao, X., Liu, H., Gao, S.: Classification of Single-Trial Electroencephalogram During Finger Movement. IEEE Transactions on Biomedical Engineering 51(6), 1019–1025 (2004)CrossRefGoogle Scholar
  6. 6.
    Li, Y., et al.: Single Trial EEG Classification During Finger Movement Task by Using Hidden Markov Models. In: 2nd International IEEE EMBS Conference on Neural Engineering, Arlington, Virginia, pp. 625–628 (2005)Google Scholar
  7. 7.
    Ranaweera, R.D., Talavage, T.M., Krishnan, A.: Time-frequency Features Differentiate Direction of Finger Movement in Cued and Self-paced Tasks. In: 2nd International IEEE EMBS Conference on Neural Engineering, Arlington, Virginia, pp. 551–554 (2005)Google Scholar
  8. 8.
    Pfurtscheller, G., Neuper, C., Flotzinger, D., Pregenzer, M.: EEG-Based Discrimination Between Imagination of Right and Left Hand Movement. Journal of Electro-encephalography and Clinical Neurophysiology 103, 642–651 (1997)CrossRefGoogle Scholar
  9. 9.
    Blankertz, B., et al.: Boosting Bit Rates and Error Detection for the Classification of Fast-Paced Motor Commands Based on Single-Trial EEG Analysis. IEEE Transactions on Neural System and Rehabilitation Engineering 11(2), 127–131 (2003)CrossRefGoogle Scholar
  10. 10.
    Wang, Y., Berg, P., Scherg, M.: Common Spatial Subspace Decomposition Applied to Analysis of Brain Responses Under Multiple Task Conditions: A Simulation Study. Journal of Clinical Neurophysiology 110, 604–614 (1999)CrossRefGoogle Scholar
  11. 11.
    Bashashati, A., Fatourechi, M., Ward, R.K.: A Survey of Signal Processing Algorithms in Brain-Computer Interfaces Based on Electrical Brain Signals. Journal of Neural Engineering 4(2), R32–R57 (2007)CrossRefGoogle Scholar
  12. 12.
    Shibasaki, H., Hallett, M.: What is the Bereitschaftspotential? Journal of Clinical Neurophysiology 117, 2341–2356 (2006)CrossRefGoogle Scholar
  13. 13.
    Müller-Gerking, J., Pfurtscheller, G., Flyvbjerg, H.: Designing Optimal Spatial Filters for Single-Trial EEG Classification in a Movement Task. Journal of Clinical Neuro-physiology 110, 787–798 (1999)Google Scholar
  14. 14.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, San Diego (1990)zbMATHGoogle Scholar
  15. 15.
    Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support Vector Clustering. Journal of Machine Learning Research 2, 125–137 (2001)zbMATHGoogle Scholar
  16. 16.
    Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: A Support Vector Clustering Method. In: 15th International Conference on Pattern Recognition, Barcelona, pp. 724–727 (2000)Google Scholar
  17. 17.
    Xu, R., Wunsch II, D.: Survey of Clustering Algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)CrossRefGoogle Scholar
  18. 18.
    Blankertz, B., Curio, G., Müller, K.-R.: Classifying Single Trial EEG: Towards Brain Computer Interfacing. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems (NIPS 2001), vol. 14, pp. 157–164 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Boyu Wang
    • 1
  • Feng Wan
    • 1
  1. 1.Department of Electrical and Electronics Engineering, Faculty of Science and TechnologyUniversity of MacauMacau

Personalised recommendations