Advertisement

Effective Detection of the Alzheimer Disease by Means of Coronal NMSE SVM Feature Classification

  • Javier Ramírez
  • Rosa Chaves
  • Juan M. Górriz
  • Ignacio Álvarez
  • Diego Salas-Gonzalez
  • Míriam López
  • Fermín Segovia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5552)

Abstract

Alzheimer disease (AD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments. As the number of patients with AD has increased, early diagnosis has received more attention for both social and medical reasons. Functional brain imaging including single-photon emission computed tomography (SPECT) is commonly used to guide the clinician’s diagnosis. Conventional evaluation of SPECT scans often relies on manual reorientation, visual reading and semiquantitative analysis of certain regions of the brain. These steps are time consuming, subjective and prone to error. Currently, accuracy in the early diagnosis of certain neurodegenerative diseases such as the Alzheimer type dementia is below 70% and, frequently, these do not receive the suitable treatment. This paper shows a fully automatic computer-aided diagnosis (CAD) system for improving the accuracy in the early diagnosis of the AD. The proposed approach is based on a feature extraction process based on the normalized mean square error (NMSE) features of several coronal slices of interest (SOI) and support vector machine (SVM) classification. The proposed system yields clear improvements over existing techniques such as the voxel as features (VAF) approach yielding a 97.5% AD diagnosis accuracy.

Keywords

Support vector machines computer-aided diagnosis Alzheimer type dementia feature extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)CrossRefGoogle Scholar
  2. 2.
    Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Berlin (1995)CrossRefzbMATHGoogle Scholar
  3. 3.
    Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, Inc., New York (1998)zbMATHGoogle Scholar
  4. 4.
    Platt, J.C.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Advances in Kernel Methods - Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)Google Scholar
  5. 5.
    Clarkson, P., Moreno, P.: On the use of support vector machines for phonetic classification. In: Proc. of the IEEE Int. Conference on Acoustics, Speech and Signal Processing, vol. 2, pp. 585–588 (1999)Google Scholar
  6. 6.
    Ganapathiraju, A., Hamaker, J.E., Picone, J.: Applications of support vector machines to speech recognition. IEEE Transactions on Signal Processing 52(8), 2348–2355 (2004)CrossRefGoogle Scholar
  7. 7.
    Ramírez, J., Górriz, J.M., Gómez-Río, M., Romero, A., Chaves, R., Lassl, A., Rodríguez, A., Puntonet, C.G., Theis, F., Lang, E.: Effective emission tomography image reconstruction algorithms for SPECT data. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 741–748. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Salas-González, D., Górriz, J.M., Ramírez, J., Lassl, A., Puntonet, C.G.: Improved gauss-newton optimization methods in affine registration of SPECT brain images. IET Electronics Letters 44(22), 1291–1292 (2008)CrossRefGoogle Scholar
  9. 9.
    Saxena, P., Pavel, D.G., Quintana, J.C., Horwitz, B.: An automatic thresholdbased scaling method for enhancing the usefulness of Tc-HMPAO SPECT in the diagnosis of Alzheimers disease. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 623–630. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Claus, J.J., van Harskamp, F., Breteler, M.M.B., Krenning, E.P., de Koning abd, J.M., van der Cammen, I., Hofman, A., Hasan, D.: The diagnostic value of SPECT with tc 99m HMPAO in alzheimer’s disease. a population-based study. Neurology 44(3), 454–461 (1994)CrossRefGoogle Scholar
  11. 11.
    Kogure, D., Matsuda, H., Ohnishi, T., Asada, T., Uno, M., Kunihiro, T., Nakano, S., Takasaki, M.: Longitudinal evaluation of early Alzheimer disease using brain perfusion SPECT. The Journal of Nuclear Medicine 41(7), 1155–1162 (2000)Google Scholar
  12. 12.
    Braak, H., Braak, E.: Neuropathological stageing of alzheimer-related changes. Acta Neuropathologica 82(4), 239–259 (1991)CrossRefGoogle Scholar
  13. 13.
    Stoeckel, J., Malandain, G., Migneco, O., Koulibaly, P.M., Robert, P., Ayache, N., Darcourt, J.: Classification of SPECT images of normal subjects versus images of alzheimer’s disease patients. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 666–674. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Javier Ramírez
    • 1
  • Rosa Chaves
    • 1
  • Juan M. Górriz
    • 1
  • Ignacio Álvarez
    • 1
  • Diego Salas-Gonzalez
    • 1
  • Míriam López
    • 1
  • Fermín Segovia
    • 1
  1. 1.Dept. of Signal Theory, Networking and CommunicationsUniversity of GranadaSpain

Personalised recommendations