Advertisement

Time Series Prediction Based on Generalization Bounds for Support Vector Machine

  • Liming Yang
  • Laisheng Wang
  • Yitian Xu
  • Qun Sun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5552)

Abstract

The fundamental problem of selecting the order and identifying the time varying parameters of an autoregressive model (AR) concerns many important fields. The Vapnik-Chervonenkis (VC) generalization bound provides a mathematical framework for the practical models selection from finite and noisy data sets of time series dataset. In this paper, based on the VC generalization bound for Support Vector Machine (SVM), we introduce a new method of identifying the time varying parameters of an AR model, then and two SVM-based time series prediction models are formulated. Both numerical experiments and theoretical analysis show that the proposed models are feasible and effective.

Keywords

Time series prediction AR model SVM VC bounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vapnik, V.: The Nature of Statiscal Learning Theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  2. 2.
    Cherkassky, V., Shao, X., Mulier, F., Vapnik, V.: Model Complexity Control for Regression using VC Generalization Bounds. IEEE Transaction on Neural Networks 10(5), 1075–1089 (1999)CrossRefGoogle Scholar
  3. 3.
    Smola, A.J., Schölkoph, B.: A Tutorial on Support Vector Regression. In: Proceedings of the 7th International Conference on Artificial Neural Networks, London, pp. 999–1004. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Tikka, J., Lendasse, A., Hollmén, J.: Analysis of Fast Input Selection: Application in Time Series Prediction. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 161–170. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Cherkassky, V.: Model Complexity Control and Statistical Learning Theory. Natural computing 1, 109–133 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden Day, San Francisco (1970)zbMATHGoogle Scholar
  7. 7.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Liming Yang
    • 1
  • Laisheng Wang
    • 1
  • Yitian Xu
    • 1
  • Qun Sun
    • 1
  1. 1.College of ScienceChina Agricultural UniversityBeijingChina

Personalised recommendations