Advertisement

An Online Self-constructing Fuzzy Neural Network with Restrictive Growth

  • Ning Wang
  • Xianyao Meng
  • Meng Joo Er
  • Xinjie Han
  • Song Meng
  • Qingyang Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5552)

Abstract

In this paper, a novel paradigm, termed online self constructing fuzzy neural network with restrictive growth (OSFNNRG) which incorporates a pruning strategy into new growth criteria, is proposed. The proposed growing procedure without pruning not only speeds up the online learning process but also results in a more parsimonious fuzzy neural network while comparable performance and accuracy can be achieved by virtue of the growing and pruning mechanism. The OSFNNRG starts with no hidden neurons and parsimoniously generates new hidden units according to the proposed growth criteria as learning proceeds. In the parameter learning phase, all the free parameters of hidden units, regardless of whether they are newly created or originally existing, are updated by the extended Kalman filter (EKF) method. The performance of the OSFNNRG algorithm is compared with other popular approaches like OLS, RBF-AFS, DFNN and GDFNN in nonlinear dynamic system identification. Simulation results demonstrate that the learning speed of the proposed OSFNNRG algorithm is faster and the network structure is more compact with comparable generalization performance and accuracy.

Keywords

Fuzzy neural network Online Self-constructing Extended Kalman filter (EKF) Growth criteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jang, J.-S.R.: ANFIS: Adaptive-network-based Fuzzy Inference System. IEEE Trans. on Syst. Man and Cybern. 23, 665–684 (1993)CrossRefGoogle Scholar
  2. 2.
    Platt, J.: A Resource-allocating Network for Function Interpolation. Neural Comput. 3, 213–225 (1991)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kadirkamanathan, V., Niranjan, M.: A Function Estimation Approach to Sequential Learning with Neural Networks. Neural Comput. 5, 954–975 (1993)CrossRefGoogle Scholar
  4. 4.
    Lu, Y.W., Sundararajan, N., Saratchandran, P.: A sequential Learning Scheme for Function Approximation using Minimal Radial Basis Function (RBF) Neural Networks. Neural Comput. 9, 461–478 (1997)CrossRefzbMATHGoogle Scholar
  5. 5.
    Lu, Y.W., Sundararajan, N., Saratchandran, P.: Performance Evaluation of a Sequential Minimal Radial Basis function (RBF) Neural Network Nearning Algorithm. IEEE Trans. on Neural Netw. 9(2), 308–318 (1998)CrossRefGoogle Scholar
  6. 6.
    Huang, G.B., Saratchandran, P., Sundararajan, N.: An Efficient Sequential Learning Algorithm for Growing and Pruning RBF (GAP-RBF) networks. IEEE Trans. on Syst. Man and Cybern. Part B Cybern. 34(6), 2284–2292 (2004)CrossRefGoogle Scholar
  7. 7.
    Huang, G.B., Saratchandran, P., Sundararajan, N.: A Generalized Growing and Pruning RBF (GGAP-RBF) Neural Network for Function Approximation. IEEE Trans. on Neural Netw. 16(1), 57–67 (2005)CrossRefGoogle Scholar
  8. 8.
    Wu, S.Q., Er, M.J.: Dynamic Fuzzy Neural Networks - a Novel Approach to Function Approximation. IEEE Trans. on Syst. Man and Cybern. Part B Cybern. 30(2), 358–364 (2000)CrossRefGoogle Scholar
  9. 9.
    Wu, S.Q., Er, M.J., Gao, Y.: A Fast Approach for Automatic Generation of Fuzzy Rules by Generalized Dynamic Fuzzy Neural Networks. IEEE Trans. on Fuzzy Syst. 9(4), 578–594 (2001)CrossRefGoogle Scholar
  10. 10.
    Juang, C.-F., Lin, C.-T.: An On-line Self-constructing Neural Fuzzy Inference Network and Its Applications. IEEE Trans. on Fuzzy Syst. 6(1), 12–32 (1998)CrossRefGoogle Scholar
  11. 11.
    Liang, N.Y., Huang, G.B., Saratchandran, P., Sundararajan, N.: A Fast and Accurate Online Sequential Learning Algorithm for Feedforward Networks. IEEE Trans. on Neural Netw. 17(6), 1411–1423 (2006)CrossRefGoogle Scholar
  12. 12.
    Leng, G., McGinnity, T.M., Prasad, G.: An Approach for On-line Extraction of Fuzzy Rules using a Self-organising Fuzzy Neural Network. Fuzzy Sets and Syst. 150, 211–243 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cho, K.B., Wang, B.H.: Radial Basis Function based Adaptive Fuzzy Systems and Their Applications to System Identification and Prediction. Fuzzy Sets and Syst. 83, 325–339 (1996)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chen, S., Cowan, C.F.N., Grant, P.M.: rthogonal Least Squares Learning Algorithm for Radial Basis Function Network. IEEE Trans. on Neural Netw. 2(2), 302–309 (1991)CrossRefGoogle Scholar
  15. 15.
    Chao, C.T., Chen, Y.J., Teng, C.C.: Simplification of Fuzzy-neural Systems using similarity Analysis. IEEE Trans. on Syst. Man and Cybern. Part B Cybern. 26(2), 344–354 (1996)CrossRefGoogle Scholar
  16. 16.
    Rojas, I., Pomares, H., Bernier, J.L., Ortega, J., Pino, B., Pelayo, F.J., Prieto, A.: Time Series Analysis using Normalized PG-RBF Network with Regression Weights. Neurocomput. 42, 267–285 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Wang, L.X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice-Hall, Englewood Cliffs (1994)Google Scholar
  18. 18.
    Jang, J.-S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice-Hall, Englewood Cliffs (1997)Google Scholar
  19. 19.
    Salmeron, M., Ortega, J., Puntonet, C.G., Prieto, A.: Improved RAN Sequential Prediction Using Orthogonal techniques. Neurocomput. 41, 153–172 (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ning Wang
    • 1
    • 2
  • Xianyao Meng
    • 1
  • Meng Joo Er
    • 2
  • Xinjie Han
    • 1
  • Song Meng
    • 1
  • Qingyang Xu
    • 1
  1. 1.Institute of AutomationDalian Maritime UniversityDalianChina
  2. 2.School of EEENanyang Technological UniversitySingaporeSingapore

Personalised recommendations