Inference of Differential Equations for Modeling Chemical Reactions

  • Bin Yang
  • Yuehui Chen
  • Qingfang Meng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5551)


This paper presents an evolutionary method for identifying a system of ordinary differential equations (ODEs) from the observed time series data. The structure of ODE is inferred by the Multi Expression Programming (MEP) and the ODE’s parameters are optimized by using particle swarm optimization (PSO). The experimental results on chemical reaction modeling problems show effectiveness of the proposed method.


Multi expression programming Ordinary differential equations Particle swarm optimization Chemical reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tsoulos, I.G., Lagaris, I.E.: Solving Differential Equations with Genetic Programming. Genetic Programming and Evolvable Machines 1, 1389–2576 (2006)Google Scholar
  2. 2.
    Cao, H., Kang, L., Chen, Y., Yu, J.: Evolutionary Modeling of Systems of Ordinary Differential Equations with Genetic Programming. Genetic Programming and Evolvable Machines 40, 309–337 (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Iba, H., Mimura, A.: Inference of a Gene Regulatory Network by Means of Interactive Evolutionary Computing. Information Sciences 145, 225–236 (2002)CrossRefGoogle Scholar
  4. 4.
    Bongard, J., Lipson, H.: Automated Reverse Engineering of Nonlinear Dynamical Systems. Proceedings of the National Academy of Science 104, 9943–9948 (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Oltean, M., Dumitrescu, D.: Multi Expression Programming. Technical Report, UBB-01-2002, Babes-Bolyai University, Cluj-Napoca, Romania, www.mep.cs.ubbcluj.rog
  6. 6.
    Crina, G., Ajith, A., Sang, Y.H.: Multi-Expression Programming for Intrusion Detection System. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 163–172. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Andrew, H.W.: System Identification Using Genetic Programming. In: Proc. of 2nd Int. Conference on Adaptive Computing in Engineering Design and Control (1996)Google Scholar
  8. 8.
    Oltean, M., Grosan, C.: Evolving Digital Circuits Using Multi Expression Programming. In: Zebulum, R., et al. (eds.) NASA/DoD Conference on Evolvable Hardware, Seattle, June 24-26, pp. 87–90. IEEE Press, NJ (2004)Google Scholar
  9. 9.
    Chen, Y.H., Yang, B., Ajith, A.: Flexible Neural Trees Ensemble for Stock Index Modeling. Neurocomputing 70, 697–703 (2007)CrossRefGoogle Scholar
  10. 10.
    Takeuchi, Y.: Global Dynamical Properties of Lotka-Volterra Systems. World Scientific, Singapore (1996)CrossRefzbMATHGoogle Scholar
  11. 11.
    Arkin, A.P., Ross, J.: Statistical Construction of Chemical Reaction Mechanisms from Measured Time-Series. J. Phys. Chem., 970–979 (1995)Google Scholar
  12. 12.
    Gennemark, P., Wedelin, D.: Efficient Algorithms for Ordinary Differential Equation Model Identification of Biological Systems. IET Syst. Biol. 1, 120–129 (2007)CrossRefGoogle Scholar
  13. 13.
    Savageau, M.A.: Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Addison-Wesley, Reading (1976)zbMATHGoogle Scholar
  14. 14.
    Hitoshi, I.: Inference of Differential Equation Models by Genetic Programming. Information Sciences 178, 4453–4468 (2008)CrossRefGoogle Scholar
  15. 15.
    Mark, G.: Bayesian Inference for Differential Equations. Theoretical Computer Science 408, 4–16 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Bin Yang
    • 1
  • Yuehui Chen
    • 1
  • Qingfang Meng
    • 1
  1. 1.Computational Intelligence Lab.School of Information Science and EngineeringUniversity of JinanJinanChina

Personalised recommendations