Skip to main content

The Basis of Nanomagnetism

  • Chapter
  • First Online:
Principles of Nanomagnetism

Part of the book series: NanoScience and Technology ((NANO))

Summary

What is the origin of the observed differences in magnetic behavior between a sample with nanometric dimensions and a macroscopic sample of the same material? These differences are shown to arise from broken translation symmetry in nanometric samples, from the higher proportion of atoms on the surface, or interface, from the fact that the sizes of nanoscopic objects are comparable to some fundamental or characteristic lengths of the constituent material, and other effects. The exchange length and the magnetic domain wall width are some of the characteristic lengths that are more relevant to the magnetic properties. The shape of the density of electronic states curve is also dependent on the dimensionality of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • S.D. Bader , Rev. Mod. Phys. 78, 1–15 (2006)

    Article  ADS  Google Scholar 

  • X. Batlle, A. Labarta , J. Phys. D: Appl. Phys. 35, R15–R42 (2002)

    Article  ADS  Google Scholar 

  • J.A.C. Bland, B. Heinrich , (eds.), Ultrathin Magnetic Structures, vols I–IV (Springer, Berlin, 2005)

    Google Scholar 

  • J.F. Bobo , L. Gabillet, M. Bibes, J. Phys. Condens. Matter. 16, S471–S496 (2004)

    Article  ADS  Google Scholar 

  • C. Chappert, A. Barthelémy , in Nanomagnetism and Spin Electronics, ed. by C. Dupas, P. Houdy, M. Lahmany. Nanoscience (Springer, Berlin, 2007), pp. 503–582

    Google Scholar 

  • C.L. Dennis , R.P. Borges, L.D. Buda, U. Ebels, J.F. Gregg, M. Hehn, E. Jouguelet, K. Ounadjela, I. Petej, I.L. Prejbeanu, M.J. Thornton, J. Phys. Condens. Matter 14, R1175–R1262 (2002)

    Article  ADS  Google Scholar 

  • A. Enders, P. Gambardella, K. Kern , in Magnetism of Low-Dimensional Metallic Structures, ed. by H. Kronmüller, S. Parkin. Handbook of Magnetism and Advanced Magnetic Materials, vol 1 (Wiley, Chichester, 2007), pp. 577–639

    Google Scholar 

  • M.R. Fitzsimmons , S.D. Bader, J.A. Borchers, G.P. Felcher, J.K. Furdyna, A. Hoffmann, J.B. Kortright, I.K. Schuller, T.C. Schulthess, S.K. Sinha, M.F. Toney, D. Weller, S. Wolf, J. Magn. Magn. Mat. 271, 103–146 (2004)

    Article  ADS  Google Scholar 

  • O. Fruchart, A. Thiaville , Compt. Rend. Phys. 6, 921–933 (2005)

    Article  ADS  Google Scholar 

  • C.P. Poole Jr., F.J. Owens , Introduction to Nanotechnology (Wiley, Hoboken, 2003)

    Google Scholar 

  • R. Skomski , J. Phys. Condens. Matter. 15, R841–R896 (2003)

    Article  Google Scholar 

  • C.A.F. Vaz , J.A.C. Bland, G. Lauhoff, Rep. Prog. Phys. 71, 056501–056578 (2008)

    Article  ADS  Google Scholar 

References

  1. C. Alexiou, R. Jurgons, in Magnetic Drug Targeting, ed. by W. Andrä, H. Nowak. Magnetism in Medicine: A Handbook, 2nd edn. (Wiley, Weinheim, 2007), pp. 596–605

    Google Scholar 

  2. M. Le Bellac, Quantum and Statistical Field Theory (Oxford University Press, Oxford, 1991)

    Google Scholar 

  3. J.A.C. Bland, B. Heinrich, Ultrathin Magnetic Structures (Springer, Berlin, 2005)

    Google Scholar 

  4. V.E. Borisenko, S. Ossicini, What is What in the Nanoworld (Wiley, Weinheim, 2004)

    Book  Google Scholar 

  5. K.H.J. Buschow (ed.), Concise Encyclopedia of Magnetic and Superconducting Materials, 2nd edn. (Elsevier, Amsterdam, 2005)

    Google Scholar 

  6. K. Chen, A.M. Ferrenberg, D.P. Landau, Phys. Rev. B 48, 3249–3256 (1993)

    Article  ADS  Google Scholar 

  7. M.E. Evans, F. Heller, Environmental Magnetism (Academic Press, San Diego, 2003)

    Google Scholar 

  8. G. Fleissner, B. Stahl, P. Thalau, G. Falkenberg, G. Fleissner, Naturwissenschaften 94, 631–642 (2007)

    Article  ADS  Google Scholar 

  9. P.P. Freitas, H. Ferreira, S. Cardoso, S. van Dijken, J. Gregg, in Nanostructures for Spin Electronics, ed. by D. Sellmyer, R. Skomski. Advanced Magnetic Nanostructures (Springer, New York, 2006), pp. 403–460

    Google Scholar 

  10. R.F. Freitas, W.W. Wilcke, IBM J. Res. Dev. 52, 439–447 (2008)

    Article  Google Scholar 

  11. O. Fruchart, A. Thiaville, Compt. Rend. Phys. 6, 921–933 (2005)

    Article  ADS  Google Scholar 

  12. R. Wu, A.J. Freeman, Phys. Rev. Lett. 69, 2867–2870 (1992)

    Article  ADS  Google Scholar 

  13. L. He, C. Chen, N. Wang, W. Zhou, L. Guo, J. Appl. Phys. 102, 103911–103914 (2007)

    Google Scholar 

  14. R. Hergt, W. Andrä, in Magnetic Hyperthermia and Thermoablation, ed. by W. Andrä, H. Nowak. Magnetism in Medicine: A Handbook, 2nd edn. (Wiley, Weinheim, 2007), pp. 550–570

    Google Scholar 

  15. M. Hosokawa, K. Nogi, M. Naito, T. Yokoyama, Nanoparticle Technology Handbook (Elsevier, Amsterdam, 2007)

    Google Scholar 

  16. F. Huang, M.T. Kief, G.J. Mankey, R.F. Willis, Phys. Rev. B 49, 3962–3971 (1994)

    Article  ADS  Google Scholar 

  17. J. Jorzick, C. Kramer, S.O. Demokritov, B. Hillebrands, B. Bartenlian, C. Chappert, D. Decanini, F. Rousseaux, E. Cambril, E. Sondergard, M. Bailleul, C. Fermon, A.N. Slavin, J. Appl. Phys. 89, 7091–7095 (2001)

    Google Scholar 

  18. Y. Li, K. Baberschke, Phys. Rev. Lett. 68, 1208–1211 (1992)

    Article  ADS  Google Scholar 

  19. I. Mertig, in Thin Film Magnetism: Band Calculations, ed. by K.H.J. Buschow. Concise Encyclopedia of Magnetic and Superconducting Materials, 2nd edn. (Elsevier, Amsterdam, 2005)

    Google Scholar 

  20. S. Odenbach, in Ferrofluids, ed. by K.H.J. Buschow. Handbook of Magnetic Materials, vol 16 (Elsevier, Amsterdam, 2006), pp. 127–208

    Google Scholar 

  21. S. Ohnishi, A.J. Freeman, M. Weinert, Phys. Rev. B 28, 6741–6748 (1983)

    Article  ADS  Google Scholar 

  22. M.J. Prandolini, Rep. Prog. Phys. 69, 1235–1324 (2006)

    Article  ADS  Google Scholar 

  23. S.N. Song, J. Ketterson, in Ultrathin Films and Superlattices, ed. by R.W. Cahn, P. Haasen, E.J. Kramer. Electronic and Magnetic Properties of Metals and Ceramics, vol 3A (Wiley, New York, 1991)

    Google Scholar 

  24. C.A.F. Vaz, J.A.C. Bland, G. Lauhoff, Rep. Prog. Phys. 71, 056501–056578 (2008)

    Article  ADS  Google Scholar 

  25. D. Weller, T. McDaniel, in Media for Extremely High Density Recording, ed. by D. Sellmyer, R. Skomski. Advanced Magnetic Nanostructures (Springer, New York, 2006), pp. 295–324

    Google Scholar 

  26. R. Wiltschko, W. Wiltschko, Magnetic Orientation in Animals (Springer, Berlin, 1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto P. Guimarães .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guimarães, A.P. (2009). The Basis of Nanomagnetism. In: Principles of Nanomagnetism. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01482-6_1

Download citation

Publish with us

Policies and ethics