Identifying Firm-Specific Risk Statements in News Articles

  • Hsin-Min Lu
  • Nina WanHsin Huang
  • Zhu Zhang
  • Tsai-Jyh Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5477)


Textual data are an important information source for risk management for business organizations. To effectively identify, extract, and analyze risk-related statements in textual data, these processes need to be automated. We developed an annotation framework for firm-specific risk statements guided by previous economic, managerial, linguistic, and natural language processing research. A manual annotation study using news articles from the Wall Street Journal was conducted to verify the framework. We designed and constructed an automated risk identification system based on the annotation framework. The evaluation using manually annotated risk statements in news articles showed promising results for automated risk identification.


Risk management epistemic modality evidentiality machine learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Slywotzky, A.J., Drzik, J.: Countering the Biggest Risk of All. Harvard Business Review, 1–11 (2005)Google Scholar
  2. 2.
    Chapelle, A., Crama, Y., Hubner, G., Peters, J.-P.: Practical methods for measuring and managing operational risk in the financial sector: A clinical study. Journal of Banking & Finance 32, 1049–1061 (2008)CrossRefGoogle Scholar
  3. 3.
    Merriam-Webster: Risk: Definition from the Merrian-Webster Online Dictionary (2008)Google Scholar
  4. 4.
    COSO: Enterprise Risk Management - Intergrated Framework. COSO(Committee of Sponsoring Organizations of the Treadway Commission) (2004)Google Scholar
  5. 5.
    Mas-Colell, A., Whinston, M., Green, J.R.: Microeconomic Theory, Oxford (1995)Google Scholar
  6. 6.
    Bruce, R.F., Wiebe, J.M.: Recognizing subjectivity: a case study of manual tagging. Natural Language Engineering 1, 1–16 (1999)Google Scholar
  7. 7.
    Wiebe, J., Wilson, T., Cardie, C.: Annotating Expressions of Opinions and Emotions in Language. Language Resources and Evaluation 39, 165–210 (2005)CrossRefGoogle Scholar
  8. 8.
    Rubin, V.L., Liddy, E.D.: Certainty Identification in Texts: Categorization Model and Manual Tagging Results. In: Shanahan, J.G., Qu, Y., Wiebe, J. (eds.) Computing Attitude and Affect in Text: Theory and Applications. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Rubin, V.L.: Certainty Categorization Model. In: AAAI Spring Symposium: Exploring Attitude and Affect in Text: Theories and Applications, Stanford, CA (2004)Google Scholar
  10. 10.
    Rubin, V.L.: Starting with Certainty or Starting with Doubt: Intercoder Reliability Results for Manual Annotation of Epistemically Modalized Statements. In: Proceedings of NAACL HLT 2007, pp. 141–144 (2007)Google Scholar
  11. 11.
    Coates, J.: Epistemic Modality and Spoken Discourse. Transactions of the Philological Society 85, 110–131 (1987)CrossRefGoogle Scholar
  12. 12.
    de Haan, F.: Evidentiality and Epistemic Modality: Setting Boundaries. Southwest Journal of Linguistic 18, 83–101 (1999)Google Scholar
  13. 13.
    Porter, M.F.: An Algorithm for Suffix Stripping. Program 14, 130–137 (1980)CrossRefGoogle Scholar
  14. 14.
    Berger, A.L., Pietra, V.J.D., Pietra, S.A.D.: A maximum entropy approach to natural language processing. Comput. Linguist. 22, 39–71 (1996)Google Scholar
  15. 15.
    Joachims, T.: Making large-Scale SVM Learning Practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT-Press, Cambridge (1999)Google Scholar
  16. 16.
    Cortes, C., Mohri, M.: Confidence Intervals for the Area under the ROC Curve. In: Advances in Neural Information Processing Systems (NIPS 2004), vol. 17. MIT Press, Vancouver (2005)Google Scholar
  17. 17.
    Abbasi, A., Chen, H.: Writeprints: A stylometric approach to identity-level identification and similarity detection in cyberspace. ACM Trans. Inf. Syst. 26, 1–29 (2008)Google Scholar
  18. 18.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Elsevier, Amsterdam (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hsin-Min Lu
    • 1
  • Nina WanHsin Huang
    • 1
  • Zhu Zhang
    • 1
  • Tsai-Jyh Chen
    • 2
  1. 1.Management Information Systems DepartmentThe University of ArizonaArizonaUSA
  2. 2.Department of Risk Management and InsuranceNational Chengchi UniversityTaipei CityTaiwan

Personalised recommendations