Skip to main content

Knowledge Based Query Processing in Large Scale Virtual Organizations

  • Conference paper

Part of the Lecture Notes in Business Information Processing book series (LNBIP,volume 24)

Abstract

This work concerns query processing to support data sharing in large scale Virtual Organizations(VO). Characterization of VO’s data sharing contexts reflects the coexistence of factors like sources overlapping, uncertain data location, and fuzzy copies in dynamic large scale environments that hinder query processing. Existing results on distributed query evaluation are useful for VOs, but there is no appropriate solution combining high semantic level and dynamic large scale environments required by VOs. This paper proposes a characterization of VOs data sources, called Data Profile, and a query processing strategy (called QPro2e) for large scale VOs with complex data profiles. QPro2e uses an evolving distributed knowledge base describing data sources roles w.r.t shared domain concepts. It allows the identification of logical data source clusters which improve query evaluation in presence of a very large number of data sources.

Keywords

  • Large scale query processing
  • Virtual organizations
  • Ontologies

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-01347-8_18
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   159.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-01347-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   209.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl. 15, 200–222 (2001)

    CrossRef  Google Scholar 

  2. NEESGrid: Nees consortium (2008), http://neesgrid.ncsa.uiuc.edu/

  3. BIRN: Bioinformatics research network - birn project (2008), http://www.loni.ucla.edu/birn/

  4. Venugopal, S., Buyya, R., Ramamohanarao, K.: A taxonomy of data grids for distributed data sharing, management, and processing. ACM Comput. Surv. 38, 3 (2006)

    CrossRef  Google Scholar 

  5. Grethe, J.: et al: Building a national collaboratory to hasten the derivation of new understanding and treatment of disease. Studies in health technology and informatics 112, 100–109 (2005)

    Google Scholar 

  6. Chu, X., et al.: A service-oriented grid environment for integration of distributed kidney models and resources. In: Concurrency and Computation:Practice and Experience. Wiley Press, New York (2007)

    Google Scholar 

  7. Roth, M., Schwarz, P.: A wrapper architecture for legacy data sources. In: VLDB 1997, pp. 266–275. Morgan Kaufman, San Francisco (1997)

    Google Scholar 

  8. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J.D., Vassalos, V., Widom, J.: The tsimmis approach to mediation: Data models and languages. Journal of Intelligent Information Systems 8, 117–132 (1997)

    CrossRef  Google Scholar 

  9. Doan, A., Domingos, P., Halevy, A.Y.: Reconciling schemas of disparate data sources: a machine-learning approach. In: SIGMOD 2001, pp. 509–520. ACM Press, New York (2001)

    CrossRef  Google Scholar 

  10. Melnik, S., Garcia-Molina, H., Paepcke, A.: A mediation infrastructure for digital library services. In: DL 2000: Proceedings of the fifth ACM conference on Digital libraries, pp. 123–132. ACM Press, New York (2000)

    CrossRef  Google Scholar 

  11. Bruno, G., Collet, C., Vargas-Solar, G.: Configuring intelligent mediators using ontologies. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Mesiti, M., Müller, S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 554–572. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  12. Kossmann, D.: The state of the art in distributed query processing. ACM Comput. Surv. 32, 422–469 (2000)

    CrossRef  Google Scholar 

  13. Chen, M.S., Yu, P.S.: Combining joint and semi-join operations for distributed query processing. IEEE Trans. on Knowl. and Data Eng. 5, 534–542 (1993)

    CrossRef  Google Scholar 

  14. Wenlong, H., Xiaolin, L., Jixiang, J., Yu, F., Yi, X.: Data model and virtual database engine for grid environment. In: GCC 2007, pp. 823–829. IEEE Computer Society, Washington (2007)

    Google Scholar 

  15. Rundensteiner, E.A., Ding, L., Sutherland, T., Zhu, Y., Pielech, B., Mehta, N.: Cape: continuous query engine with heterogeneous-grained adaptivity. In: VLDB 2004, pp. 1353–1356 (2004)

    Google Scholar 

  16. Halevy, Y., Ives, G., Suciu, D., Tatarinov, I.: Schema mediation for large-scale semantic data sharing. The VLDB Journal 14, 68–83 (2005)

    CrossRef  Google Scholar 

  17. Huebsch, R., Hellerstein, J.M., Lanham, N., Loo, B.T., Shenker, S., Stoica, I.: Querying the internet with pier. In: VLDB 2003, VLDB Endowment, pp. 321–332 (2003)

    Google Scholar 

  18. Villamil, M., Roncancio, C., Labb, C.: Range Queries in Massively Distributed Data. In: Proc. Int’l WS on Grid and Peer-to-Peer Computing Impacts on Large Scale Heterogeneous Distributed Database Systems, Krakow, Poland (2006)

    Google Scholar 

  19. Hayek, R., Raschia, G., Valduriez, P., Mouaddib, N.: Summary management in p2p systems. In: EDBT, pp. 16–25 (2008)

    Google Scholar 

  20. Tatarinov, I., Ives, Z., Madhavan, J., Halevy, A., Suciu, D., Dalvi, N., Dong, X.L., Kadiyska, Y., Miklau, G., Mork, P.: The piazza peer data management project. SIGMOD Rec. 32, 47–52 (2003)

    CrossRef  Google Scholar 

  21. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér, M., Risch, T.: Edutella: a p2p networking infrastructure based on rdf. In: WWW 2002, pp. 604–615. ACM, New York (2002)

    CrossRef  Google Scholar 

  22. Horrocks, I.: Owl: A description logic based ontology language. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 5–8. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  23. Eric Prud, A.S.: Sparql query language for rdf (2007), http://www.w3.org/tr/rdf-sparql-query/

  24. Carriero, N., Gelernter, D.: Linda in context. Commun. ACM 32, 444–458 (1989)

    CrossRef  Google Scholar 

  25. Pomares, A., Roncancio, C., Abásolo, J., Villamil, M.D.P.: Dynamic source selection in large scale mediation systems. In: Hameurlain, A. (ed.) Globe 2008. LNCS, vol. 5187, pp. 58–69. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  26. Pomares, A., Abasolo, J., Roncancio, C.: Virtual objects in large scale health information systems. In: Studies in Health Technology and Informatics, pp. 80–89. IOS Press, Amsterdam (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pomares, A., Roncancio, C., Abásolo, J., del Pilar Villamil, M. (2009). Knowledge Based Query Processing in Large Scale Virtual Organizations. In: Filipe, J., Cordeiro, J. (eds) Enterprise Information Systems. ICEIS 2009. Lecture Notes in Business Information Processing, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01347-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01347-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01346-1

  • Online ISBN: 978-3-642-01347-8

  • eBook Packages: Computer ScienceComputer Science (R0)