Representations of the Polarization of Beamlike Fields

  • Rosario Martínez-HerreroEmail author
  • Pedro M. Mejías
  • Gemma Piquero
Part of the Springer Series in Optical Sciences book series (SSOS, volume 147)

This chapter deals with the problem of characterizing the polarization of light waves behaving as beamlike fields, i.e., fields whose electric vector E essentially lies in planes orthogonal to the direction of propagation. This occurs within the so-called paraxial approach, in which the longitudinal component of E is negligible to good accuracy. A major simplification can then be introduced to the calculations.


Beam Profile Stokes Parameter Electric Field Vector Local Degree Weighted Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alonso, M. A., Korotkova, O., Wolf, E. (2006): Propagation of the electric correlation matrix and the van Cittert-Zernike theorem for random electromagnetic fields, J. Mod. Opt. 53, 969–978.ADSzbMATHCrossRefGoogle Scholar
  2. Azzam, R. M. A., Bashara, N. M. (1987): Ellipsometry and Polarized Light (North-Holland, Amsterdam).Google Scholar
  3. Beran, M. J., Parrent, G. B. (1967): Theory of Partial Coherence (Prentice Hall, Englewood Cliffs, NJ)Google Scholar
  4. Bomzon, Z., Biener, G., Kleiner, V., Hasman, E. (2002): Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings, Opt. Lett. 27, 285–287.ADSCrossRefGoogle Scholar
  5. Born, M., Wolf, E. (1999): Principles of Optics, 7th ed., (Cambridge University Press, Cambridge).Google Scholar
  6. Brosseau, C. (1998): Fundamentals of Polarized Light (Wiley, New York).Google Scholar
  7. Chipman, R. A. (1994): Polarimetry, Chap. 22, Handbook of Optics, vol. II (McGraw-Hill, New York).Google Scholar
  8. Collett, E. (1992): Polarized Light, (Marcel Dekker, Inc. New York).Google Scholar
  9. Deng, D., Guo, Q., Wu, L., Yang, X. (2007): Propagation of radially polarized elegant light beams, J. Opt. Soc. Am. B 24, 636–643.ADSGoogle Scholar
  10. Diehl, D. W., Schoonover, R. W., Visser, T. D. (2006): The structure of focused, radially polarized fields, Opt. Express 14, 3030–3038.ADSCrossRefGoogle Scholar
  11. Dorn, R., Quabis, S., Lenchs, G. (2003): Sharper focus for a radially polarized light beam, Phys. Rev. Lett. 91, 233901 (1–4).ADSCrossRefGoogle Scholar
  12. Erdelyi, M., Bor, Z. (2006): Radial and azimuthal polarizers, J. Opt. A: Pure Appl. Opt. 8, 737–742.ADSCrossRefGoogle Scholar
  13. Erdelyi, M., Gajdatsy, G. (2008): Radial and azimuthal polarizer by means of a birefringent plate, J. Opt. A: Pure Appl. Opt. 10, 055007 (1–6).CrossRefGoogle Scholar
  14. Eyyuboglu, H. T., Baykal, Y., Cai, Y. (2007): Degree of polarization for partially coherent general beams in turbulent atmosphere, Appl. Phys. B 89, 91–97.ADSGoogle Scholar
  15. Ge, D., Cai, Y. J., Lin, Q. (2004): Propagation of partially polarized Gaussian Schell-model beams in dispersive and absorbing media, Opt. Commun. 229, 93–98.ADSCrossRefGoogle Scholar
  16. Gevorgyan, A. H. (2003): Nonreciprocal waves in absorbing multilayer elements, Tech. Phys. Lett. 29, 819–823.ADSCrossRefGoogle Scholar
  17. Gil, J. J. (2000): Characteristic properties of Mueller matrices, J. Opt. Soc. Am. A 17, 328–334.ADSCrossRefGoogle Scholar
  18. Goldstein, D. (2003): Polarized Light, 2nd ed., Revised and Expanded (Optical Science and Engineering, Dekker).CrossRefGoogle Scholar
  19. Gori, F., Palma, C. (1978): Partially coherent sources which give rise to highly directional light beams, Opt. Commun. 27, 185–188.ADSCrossRefGoogle Scholar
  20. Gori, F. (1980): Collett-Wolf sources and multimode lasers, Opt. Commun. 34, 301–305.ADSCrossRefGoogle Scholar
  21. Gori, F. (1983): Mode propagation of the field generated by Collett-Wolf sources, Opt. Commun. 46, 149–154.ADSCrossRefGoogle Scholar
  22. Gori, F. (1998a): Matrix treatment for partially polarized, partially coherent beams, Opt. Lett. 23, 241–243.ADSCrossRefGoogle Scholar
  23. Gori, F., Santarsiero, M., Vicalvi, S., Borghi, R., Guattari, G. (1998b): Beam coherence-polarization matrix, J. Eur. Opt. Soc. A: Pure Appl. Opt. 7, 941–951.ADSCrossRefGoogle Scholar
  24. Gori, F., Santarsiero, M., Borghi, R., Piquero, G. (2000): Use of the van Cittert-Zernike theorem for partially polarized sources, Opt. Lett 25, 1291–1293.ADSCrossRefGoogle Scholar
  25. Gori, F., Santarsiero, M., Piquero, G., Borghi, R., Mondello, A., Simon, R. (2001): Partially polarized Gaussian Schell-model beams, J. Opt. A: Pure Appl. Opt. 3, 1–9.ADSCrossRefGoogle Scholar
  26. Gori, F., Santarsiero, M., Borghi, R., Ramírez-Sánchez, V. (2008): Realizability condition for electromagnetic Schell-model sources, J. Opt. Soc. Am. A 25, 1016–1020.ADSCrossRefGoogle Scholar
  27. Gupta, D. N., Kant, N., Kim, D. E., Suk, H. (2007): Electron acceleration to GeV energy by a radially polarized laser, Phys. Lett. A 368, 402–407.ADSGoogle Scholar
  28. Hanson, S. G., Wang, W., Jakobsen, M. L., Takeda, M. (2008): Coherence and polarization of electromagnetic beams modulated by random phase screens and their changes through complex ABCD optical systems, J. Opt. Soc. Am. A 25, 2338–46.ADSCrossRefGoogle Scholar
  29. Hecht, E. (1998): Optics (Addison Wesley Longman, London).Google Scholar
  30. Korotkova, O., Salem, M., Wolf, E. (2004): Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source, Opt. Lett. 29, 1173–1175.ADSCrossRefGoogle Scholar
  31. Kozawa, Y., Sato, S. (2007): Sharper focal spot formed by higher-order radially polarized laser beams, J. Opt. Soc. Am. A 24, 1793–1798.ADSCrossRefGoogle Scholar
  32. Lu, B. D., Pan, L. Z. (2002): Propagation of vector Gaussian-Schell-model beams through a paraxial optical ABCD system, Opt. Commun. 205, 7–16.ADSCrossRefGoogle Scholar
  33. Lumer, Y., Moshe, I., Horovitz, Z., Jackel, S., Machavariani, G., Meir, A. (2008): Thermally induced birefringence in nonsymmetrically pumped laser rods and its implications for attainment of good beam quality in high-power, radially polarized lasers, Appl. Opt. 47, 3886–3891.ADSCrossRefGoogle Scholar
  34. Lumer, Y., Moshe, I., (2009): Radial and azimuthal beam parameters, Opt. Lett. 34, 265–267.Google Scholar
  35. Machavariani, G., Lumer, Y., Moshe, I., Meir, A., Jackel, S. (2007): Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes, Opt. Lett. 32, 1468–1470.ADSCrossRefGoogle Scholar
  36. Mandel, L., Wolf, E. (1995): Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge).Google Scholar
  37. Martínez-Herrero, R., Mejías, P. M., Piquero, G. (2006): Overall parameters for the characterization of non-uniformly totally polarized beams, Opt. Commun. 265, 6–10.ADSCrossRefGoogle Scholar
  38. Martínez-Herrero, R., Mejías, P. M., Piquero, G. (2008): Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams, Opt. Commun. 281, 1976–1980.ADSCrossRefGoogle Scholar
  39. Mejías, P. M., Martínez-Herrero, R., Piquero, G., Movilla, J. M. (2002): Parametric characterization of the spatial structure of non-uniformly polarized laser beams, Prog. Quantum Electron. 26, 65–130.ADSCrossRefGoogle Scholar
  40. Meier, M., Romano, V., Feurer, T. (2007): Material processing with pulsed radially and azimuthally polarized laser radiation, Appl. Phys. 86, 329–334.CrossRefGoogle Scholar
  41. Moshe, I., Jackel, S., Meir, A. (2003): Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects, Opt. Lett. 28, 807–809.ADSCrossRefGoogle Scholar
  42. Moshe, I., Jackel, S., Meir, A., Lumer, Y, Leibush, E. (2007): 2 kW, M2<10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers, Opt. Lett. 32, 47–49.ADSCrossRefGoogle Scholar
  43. Moser, T., Glur, H., Romano, V., Pigeon, F., Parriaux, O., Ahmed, M. A., Graf, T. (2005): Polarization-selective grating mirrors used in the generation of radial polarization, Appl. Phys. B 80, 707–713.ADSGoogle Scholar
  44. Nieminen, T. A., Heckenberg, N. R., Rubinsztein-Dunlop, H. (2008): Forces in optical tweezers with radially and azimuthally polarized trapping beams, Opt. Lett. 33, 122–124.ADSCrossRefGoogle Scholar
  45. Niziev, V. G., Nesterov, A. V. (1999): Influence of beam polarization on laser cutting efficiency, J. Phys. D: Appl. Phys. 32, 1455–1461.ADSCrossRefGoogle Scholar
  46. O’Neill, E. L. (1963): Introduction to Statistical Optics (Addison-Wesley, Reading, Massachusetts).Google Scholar
  47. Oron, R., Blit, S., Davidson, N., Fiesem, A. A. (2000): The formation of laser beams with pure azimuthal or radial polarization, Appl. Phys. Lett. 77, 3322–3324.ADSCrossRefGoogle Scholar
  48. Pan, L., Lu, B. (2003): Propagation properties of partially polarized Gaussian Schell-model beams through an axis-unsymmetric paraxial ABCD system, Opt. Quantum Electron. 35, 129–138.CrossRefGoogle Scholar
  49. Pasilly, N., Denis, R. S. (2005): Aït-Ameur, K., Treussart, F., Hierle, R., Roch, J. F., Simple interferometric technique for generation of a radially polarized light beam, J. Opt. Soc. Am. A 22, 984–991.ADSCrossRefGoogle Scholar
  50. Perina, J. (1971): Coherence of Light (Van Nostrand Reinhold Company, London).Google Scholar
  51. Phua, P. B., Lai, W. J. (2007): Simple coherent polarization manipulation scheme for generating high power radially polarized beam, Opt. Express 15, 14251–14256.ADSCrossRefGoogle Scholar
  52. Piquero, G., Movilla, J. M., Mejías, P. M., Martínez-Herrero, R. (1999): Degree of polarization of non-uniformly partially polarized beams: a proposal, Opt. Quant. Electron. 31, 223–225.CrossRefGoogle Scholar
  53. Piquero, G., Borghi, R., Santarsiero, M. (2001a): Gaussian Schell-model beams propagating through polarization gratings, J. Opt. Soc. Am. A 18, 1399–1405.ADSCrossRefGoogle Scholar
  54. Piquero, G., Borghi, R., Mondello, A., Santarsiero, M. (2001b): Far field of beams generated by quasi-homogeneous sources passing through polarization gratings, Opt. Comm. 195, 339–350.ADSCrossRefGoogle Scholar
  55. Piquero, G., Gori, F., Romanini, P., Santarsiero, M., Borghi, R., Mondello, A. (2002): Synthesis of partially polarized Gaussian Schell-model sources, Opt. Commun. 208, 9–16.ADSCrossRefGoogle Scholar
  56. Piquero, G., Vargas-Balbuena, J. (2004): Non-uniformly polarized beams across their transverse profiles: an introductory study for undergraduate optics courses, Eur. J. Phys. 25, 793–800.CrossRefGoogle Scholar
  57. Provenziani, D., Ciattoni, A., Cincotti, G., Palma, C., Ravaccia, F., Sapia, C. (2002): Stokes parameters of a Gaussian beam in a calcite crystal, Opt. Express 10, 699–706.ADSGoogle Scholar
  58. Quabis, S., Dorn, R., Leuchs, G. (2005): Generation of a radially polarized doughnut mode of high quality, Appl. Phys. B 81, 597–600.ADSGoogle Scholar
  59. Qiu, Y., Liu, J., Chen, Z. (2009): Propagation properties of radially polarized partially coherent LG (0,1)* beams, Opt. Commun. 282, 69–73.Google Scholar
  60. Roth, M. S., Wyss, E. W., Glur, H., Weber, H. P. (2005): Generation of radially polarized beams in a Nd:YAG laser with self-adaptive overcompensation of the thermal lens, Opt. Lett. 30, 1665–1667.ADSCrossRefGoogle Scholar
  61. Roychowdhury, H., Korotkova, O. (2005): Realizability conditions for electromagnetic Gaussian Schell-model sources, Opt. Commun. 249, 379–385.ADSCrossRefGoogle Scholar
  62. Santarsiero, M., Borghi, R., Ramírez-Sánchez, V. (2009): Synthesis of electromagnetic Schell-model sources, J. Opt. Soc. Am. A 26, 1437–1443.Google Scholar
  63. Santis, P., Gori, F., Palma, C. (1979): Generalized Collett-Wolf sources, Opt. Commun. 28, 151–155.ADSCrossRefGoogle Scholar
  64. Santis, P., Gori, F., Guattari, G., Palma, C. (1986): Synthesis of partially coherent fields, J. Opt. Soc. Am. A 3, 1258–1262.Google Scholar
  65. Sheppard, C. J. R., Choudhury, A. (2004): Annular pupils, radial polarization, and superresolution, Appl. Opt. 43, 4322–4327.ADSCrossRefGoogle Scholar
  66. Shirai, T. (2005a): Polarization properties of a class of electromagnetic Gaussian Schell-model beams which have the same far-zone intensity distribution as a fully coherent laser beam, Opt. Commun. 256, 197–209.ADSCrossRefGoogle Scholar
  67. Shirai, T.; Korotkova, O.; Wolf, E. (2005b): A method of generating electromagnetic Gaussian Schell-model beams, J. Opt. A: Pure Appl. Opt 7, 232–237.ADSCrossRefGoogle Scholar
  68. Shurcliff, W. A. (1962): Polarized Light (Harvard University Press, Cambridge, Mass.).Google Scholar
  69. Simon, R. (1982): The connection between the Jones and Mueller matrices, Opt. Commun. 42, 293–297.ADSCrossRefGoogle Scholar
  70. Simon, R., Sudarshan, E. C. G., Mukunda, N. (1987): Cross polarization in laser beams, Appl. Opt. 26, 1589–1593.ADSCrossRefGoogle Scholar
  71. Stalder, M., Schadt, M. (1996): Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters, Opt. Lett. 21, 1948–50.ADSCrossRefGoogle Scholar
  72. Tidwell, S. C., Ford, D. H., Kimura, W. D. (1990): Generating radially polarized beams interferometrically, Appl. Opt. 29, 2334–2339.CrossRefGoogle Scholar
  73. Tovar, A. (1998): Production and propagation of cylindrically polarized Laguerre-Gaussian Laser beams, J. Opt. Soc. Am. A 15, 2705–2711.ADSCrossRefGoogle Scholar
  74. Volpe, G., Petrov, D. (2004): Optical tweezers with cylindrical vector beams produced by optical fibers, Opt. Commun. 237, 89–95.ADSCrossRefGoogle Scholar
  75. Wang, H., Wang, X., Zeng, A., Yang, K. (2007): Effects of coherence on anisotropic electromagnetic Gaussian-Schell model beams on propagation, Opt. Lett. 32, 2215–2217.ADSCrossRefGoogle Scholar
  76. Whitney, C. (1971): Pauli-algebraic operators in polarization optics, J. Opt. Soc. Am. 61, 1207–1213.ADSCrossRefGoogle Scholar
  77. Wolf, E. (1959): Coherence properties of partially polarized electromagnetic radiation, Il Nuovo Cimento 13, 1165–1181.zbMATHCrossRefGoogle Scholar
  78. Wolf, E. (2007): Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, Cambridge).zbMATHGoogle Scholar
  79. Wu, G., Lou, Q., Zhou, J., Dong, J., Wei, Y. (2007): Focal shift in focused radially polarized ultrashort pulsed laser beams, Appl. Opt. 46, 6251–6255.ADSCrossRefGoogle Scholar
  80. Yonezawa, K., Kozawa, Y., Sato, S. (2008): Focusing of radially and azimuthally polarized beams through a uniaxial crystal, J. Opt. Soc. Am A 25, 469–472.ADSCrossRefGoogle Scholar
  81. Zhan, Q. W. (2004): Trapping metallic Rayleigh particles with radial polarization, Opt. Express 12, 3377–3382.ADSCrossRefGoogle Scholar
  82. Zhao, G. P. (2006): Spectral switches of vector Gaussian Schell-model beams passing through a spherically aberrated lens, J. Mod. Opt. 53, 1083–1092.ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rosario Martínez-Herrero
    • 1
    Email author
  • Pedro M. Mejías
    • 1
  • Gemma Piquero
    • 1
  1. 1.Optics DepartmentUniversidad Complutense de MadridMadridSpain

Personalised recommendations