Advertisement

Progress in Computational Magneto-Fluid-Dynamics for Flow Control

  • J. S. Shang
  • P. G. Huang
  • D. B. Paul
Conference paper

Abstract

In the late 1990’s a promising and innovative concept of the Magnetohydrodynamic (MHD)-bypass scramjet engine rejuvenated interest in magnetoaerodynamic research worldwide [1]. Many interdisciplinary ideas were put forth in the areas of plasma actuator for flow control, MHD propulsion, remote energy deposition for drag reduction, radiation driven hypersonic wind tunnel, sonic boom meditation, and enhanced plasma ignition and combustion stability [2,3]. Extensive and in-depth research however has revealed that additional and refined fidelity of physics for modeling and analyzing are required to reach a conclusive assessment for the MHD-bypass scramjet engine [4]. From this lesson learned; most recent research activities tend to refocus on more basic and simpler aerodynamic-electromagnetic interaction phenomena.

Keywords

Flow Control Dielectric Barrier Discharge Electric Field Intensity Hypersonic Flow Plasma Actuator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gurijanov, E.P., Harsha, P.T.: Ajax: New Directions in Hypersonic Technology, AIAA 1996–4609 (November 1996)Google Scholar
  2. 2.
    Shang, J.S.: Recent Research in Magneto-Aerodynamics. Progress in Aerospace Science 37(1), 1–20 (2001)CrossRefGoogle Scholar
  3. 3.
    Bletzinger, P., Ganguly, B.N., Van Wie, D., Garscadden, A.: Plasma in High-Speed Aerodynamics. J. of Physics D: Applied Physics 38, R33–R57 (2005)CrossRefGoogle Scholar
  4. 4.
    Park, C., Bagdanoff, D.W., Mehta, U.B.: Theoretical Performance of a Magnetohydrodynamic-Bypass Scramjet Engine with Nonequilibrium ionization. J. Propulsion and Power 19(4), 529–537 (2004)CrossRefGoogle Scholar
  5. 5.
    Raizer, Y.P.: Gas Discharge Physics. Springer, Berlin (1991)Google Scholar
  6. 6.
    Shang, J.S., Surzhikov, S.T.: Magnetoaerodynamic Actuator for Hypersonic Flow Control. AIAA Journal 43(8), 1633–1643 (2005)CrossRefGoogle Scholar
  7. 7.
    Shang, J.S., Surzhikov, S.T., Kimmel, R., Gaitonde, D.V., Hayes, J.R., Menart, J.: Mechanisms of Plasma Actuators for Hypersonic Flow Control. Progress in Aerospace Sciences 41(8), 642–668 (2005)CrossRefGoogle Scholar
  8. 8.
    Post, M.L., Corke, T.C.: Separation Control on High Angle of Attack Airfoil Using Plasma Actuator. AIAA J. 42(2), 2177–2184 (2004)CrossRefGoogle Scholar
  9. 9.
    Moreau, E.: Air Flow Control by Non-thermal Plasma Actuators. J. Physics D: Appl. Physics 40, 605–635 (2007)CrossRefGoogle Scholar
  10. 10.
    Kimmel, R.L., Hayes, J.L., Menart, J.A., Shang, J.: Effect of Magnetic Fields on Surface Plasma Discharges at Mach 5. J. Spacecraft & Rockets 42(6), 1340–1346 (2006)CrossRefGoogle Scholar
  11. 11.
    Hayes, W.D., Probstein, R.F.: Hypersonic Flow theory. Academic Press, London (1959)zbMATHGoogle Scholar
  12. 12.
    Surzhikov, S.T., Shang, J.S.: Two-Component Plasma Model for Two-Dimensional Glow Discharge in Magnetic Field. J. Computational Physics 199, 437–464 (2004)zbMATHCrossRefGoogle Scholar
  13. 13.
    Sutton, G.W., Sherman, A.: Engineering Magnetohydrodynamics, p. 300, McGraw-Hill, New York (1965)Google Scholar
  14. 14.
    Brio, M., Wu, C.C.: An upwind Differencing Scheme for the Equations of Ideal Magnetohydrodynamics. J. Comp. Physics 75, 400–422 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Godunov, S.K.: Symmetric form of the equations of magnetohydro dynamics. Numerical Methods for Mechanics of Continuum Medium 1, 26 (1972)Google Scholar
  16. 16.
    Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I., De Zeeuw, D.L.: A Solution-Adaptive Upwind Scheme for Ideal MHD. J. Comp. Physics 154, 284–309 (1999)zbMATHCrossRefGoogle Scholar
  17. 17.
    Roe, P.L.: Approximate Riemann Solvers, Parameter Vectors and Difference Schemes. J. Comp. Phys. 43, 357–372 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Shang, J.S.: Solving Schemes for Computational Magneto-Fluid-Dynamics. Journal of Scientific Computing 25(1), 289–306 (2005)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Von Engel, A., Steenbeck, M.: Elektrische Gasenladungen, vol. II. Springer. Berlin (1932)Google Scholar
  20. 20.
    Boeuf, J.-P.: Numerical Model of RF Glow Discharges. Physical Review E 36(6), 2782–2792 (1987)Google Scholar
  21. 21.
    Gaitonde, D.V.: High-Order Solving Procedure for Three-Dimensional Nonideal Magneto-hydrodynamics. AIAA J. 39(11), 2111–2120 (2001)CrossRefGoogle Scholar
  22. 22.
    Shang, J.S., Huang, P.G., Yan, H., Surzhikov, S.T.: Electrodynamics of Direct Current Discharge, AIAA 2008–1101, Reno NV (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • J. S. Shang
    • 1
  • P. G. Huang
    • 1
  • D. B. Paul
    • 2
  1. 1.Wright State UniversityDaytonUSA
  2. 2.Wright-Patterson Air Force BaseUSA

Personalised recommendations