Symmetry Preserving Discretization of the Compressible Euler Equations

  • Emma Hoarau
  • Pierre Sagaut
  • Claire David
  • Thiên-Hiêp Lê
Conference paper

Abstract

Symmetries are transformations which act on the physical variables of a system. They can transform the time, the position, the velocity and the thermodynamical properties (density, pressure) of the physical system. But they do not modify the evolution of the physical system. This work deals with continuous symmetries which are described by the Lie group theory. In physics, symmetries are space-time transformations, such as the Galilean transformations, the Lorentz transformations, the projective transformations, the scaling transformations, the translations.

Keywords

Euler Equation Burger Equation Gaussian Pulse Compressible Euler Equation Galilean Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BDK97] Bakirova, M.I., Dorodnitsyn, V.A., Kozlov, R.: Symmetry-preserving difference schemes for some heat transfert equations. J. Phys. A: Math. Gen. 30, 8139–8155 (1997)MATHCrossRefMathSciNetGoogle Scholar
  2. [BHR96] Budd, C.J., Huang, W., Russell, R.D.: Moving mesh methods for problems with blow-up. SIAM J. Sci. Comput. 17(2), 305–327 (1996)MATHCrossRefMathSciNetGoogle Scholar
  3. [CH08] Chhay, M., Hamdouni, A.: Consistance en symétrie. Rapport technique, Université de la Rochelle (2008)Google Scholar
  4. [Dor91] Dorodnitsyn, V.A.: Transformation groups in net spaces. J. Sov. Math. 55(1), 1490–1517 (1991)MATHCrossRefGoogle Scholar
  5. [Ibr96] Ibragimov, N.H.: CRC Handbook of Lie Group Analysis of Differential Equations, vol. 1,2,3. CRC Press, Boca Raton (1994–1996)MATHGoogle Scholar
  6. [Olv86] Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New-York (1986)MATHGoogle Scholar
  7. [Olv01] Olver, P.J.: Geometric foundations of numerical algorithms and symmetry. Appl. Alg. Engin. Comp. Commun 11, 417–436 (2001)MATHCrossRefMathSciNetGoogle Scholar
  8. [RH05] Razafindralandy, D., Hamdouni, A.: Subgrid models preserving the symmetry group of the navier-stokes equations. Comptes Rendus Mécanique 333, 481–486 (2005)MATHCrossRefGoogle Scholar
  9. [RHO07] Razafindralandy, D., Hamdouni, A., Oberlack, M.: Analysis and development of subgrid turbulence models preserving the symmetry properties of navier-stokes equations. Eur. J. Mech. B Fluid 26, 531–550 (2007)MATHCrossRefMathSciNetGoogle Scholar
  10. [Sho83] Shokin, Y.I.: The method of differential approximation. Springer, Heidelberg (1983)MATHGoogle Scholar
  11. [YS76] Yanenko, N.N., Shokin, Y.I.: Group classification of difference schemes for a system of one-dimensional equations of gas dynamics. Amer. Math. Soc. Transl. 2(104), 259–265 (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Emma Hoarau
    • 1
  • Pierre Sagaut
    • 2
  • Claire David
    • 2
  • Thiên-Hiêp Lê
    • 1
  1. 1.ONERAChâtillon cedex
  2. 2.Université Pierre et Marie CurieParis

Personalised recommendations