Advertisement

The Radio Network Design Optimization Problem

Benchmarking and State-of-the-Art Solvers
  • Sílvio P. Mendes
  • Juan A. Gómez-Pulido
  • Miguel A. Vega-Rodríguez
  • Juan M. Sánchez-Pérez
  • Yago Sáez
  • Pedro Isasi
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 210)

Abstract

The fast growth and merging of communication infrastructures and services turned the planning and design of wireless networks into a very complex subject. The Radio Network Design (RND) is a NP-hard optimization problem which consists on the maximization of the coverage of a given area while minimizing the base station (BS) deployment. Solving such problems resourcefully is relevant for many fields of application and has direct impact in engineering, scientific and industrial areas. Its significance is growing due to cost dropping or profit increase allowance and can additionally be applied to several different business targets. Numerous works can be found in the literature dealing with the RND problem, although they all suffer from the same shortfall: a non-comparable efficiency. Therefore, the aim of this work is threefold: first, to offer a reliable RND benchmark reference covering a wide algorithmic spectrum, second, to offer a grand insight of accurately comparisons of efficiency, reliability and swiftness of the different employed algorithmic models and third, to disclose reproducibility details of the implemented models, including simulations of a hardware co-processing accelerator.

Keywords

Differential Evolution Graphical Processing Unit Greedy Randomize Adaptive Search Procedure Variable Neighborhood Search Restricted Candidate List 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: The Condor experience. Concurrency and Computation Practice and Experience 17, 323–356 (2005)CrossRefGoogle Scholar
  2. 2.
    Mendes, S.P., Gómez-Pulido, J.A., Vega-Rodríguez, M.A., Sánchez-Pérez, J.M.: A differential based algorithm to optimize the radio network design problem. In: Proceedings of the 2nd IEEE International Conference on e-Science and Grid Computing, p. 119 (2006)Google Scholar
  3. 3.
    Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Alba, E., Vega-Pérez, D., Mendes, S., Molina, G.: Different evolutionary approaches for selecting the optimal number and locations of omnidirectional BTS in a radio network. In: Proceedings of the 11th International Conference on Computer Aided Systems Theory (2007)Google Scholar
  4. 4.
    Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Alba, E., Vega-Pérez, D., Mendes, S.P., Molina, G.: Using omnidirectional BTS and different evolutionary approaches to solve the RND problem. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 853–860. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Mendes, S.P., Gómez-Pulido, J.A., Vega-Rodríguez, M.A., Pereira, A.M., Pérez, J.M.: Fast wide area network design optimisation using differential evolution. In: Proceedings of the International Conference on Advanced Engineering Computing and Applications in Sciences, pp. 3–10 (2007)Google Scholar
  6. 6.
    Mendes, S.P., Domingues, P., Pereira, D., Vale, R., Gomez-Pulido, J.A., Silva, L.M., Vega-Rodríguez, M.A., Sánchez-Pérez, J.M.: Omni-directional RND optimisation using differential evolution: In-depth analysis via high throughput computing. In: Proceedings of EPIA (2007)Google Scholar
  7. 7.
    Calegari, P., Guidec, F., Kuonen, P.: Combinatorial optimization algorithms for radio network planning. Journal of Theoretical Computer Science 263, 235–265 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Calegari, P., Guidec, F., Kuonen, P., Kobler, D.: Parallel island-based genetic algorithm for radio network design. Journal of Parallel and Distributed Computing 47, 86–90 (1997)CrossRefGoogle Scholar
  9. 9.
    Alba, E.: Evolutionary algorithms for optimal placement of antennae in radio network design. In: Proceedings of the International Parallel and Distributed Processing Symposium (2004)Google Scholar
  10. 10.
    Alba, E., Almeida, F., Blesa, M., Cotta, C., Díaz, M., Dorta, I., Gabarró, J., León, C., Luque, G., Petit, J., Rodríguez, C., Rojas, A., Xhafa, F.: Efficient parallel LAN/WAN algorithms for optimization: The MALLBA project. Parallel Computing 32, 415–440 (2006)CrossRefGoogle Scholar
  11. 11.
    Alba, E., Chicano, F.: On the behaviour of parallel genetic algorithms for optimal placement of antennae in telecommunications. International Journal of Foundations of Computer Science 16, 86–90 (2005)Google Scholar
  12. 12.
    Celli, G., Costamagna, E., Fanni, A.: Genetic algorithms for telecommunication network optimization. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 1227–1232 (1995)Google Scholar
  13. 13.
    Meunier, H., Talbi, E.G., Reininger, P.: A multiobjective genetic algorithm for radio network optimization. In: Proceedings of the Congress on Evolutionary Computation, pp. 317–324 (2000)Google Scholar
  14. 14.
    Watanabe, S., Hiroyasu, T., Miki, M.: Parallel evolutionary multi-criterion optimization for mobile telecommunication networks optimization. In: Proceedings of Evolutionary Methods for Design, Optimisation and Control with Applications to Industrial Problems Conference, pp. 167–172 (2001)Google Scholar
  15. 15.
    Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423 (1993)Google Scholar
  16. 16.
    Talbi, E.G., Cahon, S., Melab, N.: Designing cellular networks using a parallel hybrid metaheuristic on the computational grid. Computer Communications 30, 698–713 (2007)CrossRefGoogle Scholar
  17. 17.
    Calégari, P., Guidec, F., Kuonen, P., Chamaret, B., Ubéda, S., Josselin, S., Wagner, D., Pizarosso, M.: Radio network planning with combinatorial optimization algorithms. Theoretical Computer Science 263, 235–265 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Chamaret, B., Josselin, S., Kuonen, P., Pizarroso, M., Salas-Manzanedo, B., Ubeda, S., Wagner, D.: Radio network optimization with maximum independent set search. In: Proceedings of the 47th IEEE Vehicular Technology Conference, pp. 770–774 (1997)Google Scholar
  19. 19.
    He, J., Verstak, A., Watson, L., Rappaport, T., Anderson, C., Ramakrishnan, N., Shaffer, C., Tranter, W., Bae, K., Jiang, J.: Global optimization of transmitter placement in wireless communication systems. In: Proceedings of the High Performance Computing Symposium, pp. 328–333 (2002)Google Scholar
  20. 20.
    Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. Journal of Optimization Theory and Applications 79, 157–181 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Vasquez, M., Hao, J.K.: A heuristic approach for antenna positioning in cellular networks. Journal of Heuristics 7, 443–472 (2001)zbMATHCrossRefGoogle Scholar
  22. 22.
    Elkamchouchi, H.M., Elragal, H.M., Makar, M.A.: Cellular radio network planning using particle swarm optimization. In: Proceedings of the Radio Science Conference, pp. 1–8 (2007)Google Scholar
  23. 23.
    Tutschku, K.: Demand-based radio network planning of cellular mobile communication systems. University of Wurzburg Research Report Series, 177 (1997)Google Scholar
  24. 24.
    Church, R.L., ReVelle, C.: The maximal covering location problem. Regional Science 30, 101–118 (1974)Google Scholar
  25. 25.
    Ibbetson, L.J., Lopes, J.B.: An automatic base site placement algorithm. In: Proceedings of the 47th IEEE Vehicular Technology Conference, pp. 760–764 (1997)Google Scholar
  26. 26.
    Fritsch, T., Hanshans, S.: An integrated approach to cellular mobile communication planning using traffic data prestructured by a self-organizing feature map. In: Proceedings of the EEE International Conference on Neural Networks, pp. 822D–822I (1993)Google Scholar
  27. 27.
    Nebro, A.J., Alba, E., Molina, G., Chicano, F., Luna, F., Durillo, J.J.: Optimal antenna placement using a new multi-objective CHC algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 876–883 (2007)Google Scholar
  28. 28.
    Mendes, S., Domingues, P., Vale, R., Pereira, D., Gomez-Pulido, J.A., Silva, L.M., Vega-Rodríguez, M.A., Sánchez-Pérez, J.M.: Omni-directional RND optimisation using differential evolution: In-depth analysis via high throughput computing. In: Proceedings of the Portuguese Conference on Artificial Intelligence (2007)Google Scholar
  29. 29.
    Donninger, C., Kure, A., Lorenz, U.: Parallel Brutus: the first distributed, FPGA accelerated chess program. In: Proceedings of the 18th International Parallel and Distributed Processing Symposium, p. 44 (2004)Google Scholar
  30. 30.
    Eklund, S.E.: Time series forecasting using massively parallel genetic programming. In: Proceedings of the 17th International Parallel and Distributed Processing Symposium, p. 143.1 (2003)Google Scholar
  31. 31.
    Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. Computer Graphics Forum 26, 80–113 (2007)CrossRefGoogle Scholar
  32. 32.
    Fok, K., Wong, T., Man-Leung, J.: Evolutionary computing on consumer graphics hardware. IEEE Intelligent Systems 22, 69–78 (2007)CrossRefGoogle Scholar
  33. 33.
    Langdon, W.B., Banzhaf, W.: A SIMD interpreter for genetic programming on GPU graphics cards. In: Proceedings of the European Genetic Programming Conference (2008)Google Scholar
  34. 34.
    NVIDIA Corporation, Cuda Zone (2008), http://www.nvidia.com/object/cuda_home.html
  35. 35.
    Garey, M., Johnson, D.: Computers and intractability: A guide to the theory of NP-completeness. Freeman and Co., New York (1979)Google Scholar
  36. 36.
    Baluja, S.: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical Report CMUCS, Carnegie Mellon University, pp. 94–163 (1994)Google Scholar
  37. 37.
    Baluja, S., Caruana, R.: Removing the genetics from the standard genetic algorithm. In: Proceedings of the Twelfth International Conference on Machine Learning (1995)Google Scholar
  38. 38.
    Yang, S.Y., Ho, S.L., Ni, G.Z., Machado, J.M., Wong, K.F.: A new implementation of population based incremental learning method for optimizations in electromagnetics. IEEE Transactions on Magnetics 43, 1601–1604 (2007)CrossRefGoogle Scholar
  39. 39.
    Bureerat, S., Sriworamas, K.: Population-based incremental learning for multiobjective optimisation. Soft Computing in Industrial Applications, Advances in Soft Computing 39, 223–232 (2007)CrossRefGoogle Scholar
  40. 40.
    Hong, Y., Kwong, S., Chang, Y., Ren, Q.: Clustering ensembles guided unsupervised feature selection using population based incremental learning algorithm. Pattern Recognition 41(9), 2742–2756 (2009)CrossRefGoogle Scholar
  41. 41.
    Jelodar, M.S., Fakhraie, S.M., Ahmadabadi, M.N.: A new approach for training of artificial neural networks using population based incremental learning (PBIL). In: Proceedings of the International Conference on Computational Intelligence, pp. 165–168 (2004)Google Scholar
  42. 42.
    Chiang, F., Braun, R.: Towards a management paradigm with a constrained benchmark for autonomic communications. In: Wang, Y., Cheung, Y.-m., Liu, H. (eds.) CIS 2006. LNCS, vol. 4456, pp. 250–258. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  43. 43.
    Domínguez-González, D., Chaves-González, J.M., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Using PBIL for solving a real-world frequency assignment problem in GSM networks. New Trends in Artificial Intelligence, 207–218 (2007)Google Scholar
  44. 44.
    Papadimitriou, G.I., Obaidat, M.S., Pomportsis, A.S.: On the use of population-based incremental learning in the medium access control of broadcast communication systems. In: Proceedings of the 10th IEEE International Conference on Electronics, Circuits and Systems, pp. 1260–1263 (2003)Google Scholar
  45. 45.
    Kendall, R., Braun, R.: Digital communication filter design by stochastic optimization. In: Workshop on the Applications of Radio Science (2002)Google Scholar
  46. 46.
    Price, K., Storn, R.: Differential evolution – a simple evolution strategy for fast optimisation. Dr. Dobb’s Journal 22, 18–24 (1997)Google Scholar
  47. 47.
    Price, K., Storn, R.: Web site of DE (2006), http://www.ICSI.Berkeley.edu/~storn/code.html (accessed July 1, 2006)
  48. 48.
    Joshi, R., Sanderson, A.: Minimal representation multisensor fusion using differential evolution. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, p. 266 (1997)Google Scholar
  49. 49.
    Vasan, A., Raju, K.: Optimal reservoir operation using differential evolution. In: Proceedings of International Conference on Hydraulic Engineering: Research and Practice (2004)Google Scholar
  50. 50.
    Abbass, H.A., Sarker, R.: The Pareto differential evolution algorithm. International Journal on Artificial Intelligence Tools 11, 531–552 (2002)CrossRefGoogle Scholar
  51. 51.
    Storn, R., Price, K.: A simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, International Computer Science Institute, The University of California, Berkley (1995)Google Scholar
  52. 52.
    Lampinen, J., Zelinka, I.: Mixed variable non-linear optimization by differential evolution. In: Proceedings of the 2nd International Prediction Conference, pp. 45–55 (1999)Google Scholar
  53. 53.
    Aragão, M.P., Ribeiro, C.C., Uchoa, E., Werneck, R.F.: Hybrid local search for the Steiner problem in graphs. In: Proceedings of the 4th Metaheuristics International Conference (2001)Google Scholar
  54. 54.
    Festa, P., Resende, M.G.: An annotated bibliography of GRASP. Technical Report TD-5WYSEW, AT&T Labs Research (2004)Google Scholar
  55. 55.
    Mavridou, T., Pardalos, P.M., Pitsoulis, L.S., Resende, M.G.: A GRASP for the biquadratic assignment problem. European Journal of Operational Research 105, 613–621 (1998)zbMATHCrossRefGoogle Scholar
  56. 56.
    Martins, S.L., Resende, M.G., Ribeiro, C.C., Pardalos, P.M.: A parallel GRASP for the Steiner tree problem in graphs using a hybrid local search strategy. Journal of Global Optimization 17, 267–283 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Pardalos, P.M., Qian, T., Resende, M.G.: A greedy randomized adaptive search procedure for the feedback vertex set problem. Journal of Combinatorial Optimization 2, 399–412 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Rosseti, R., Aragão, M.P., Ribeiro, C.C., Uchoa, E., Werneck, R.F.: New benchmarck instances for the Steiner problem in graphs. In: Proceedings of the 4th Metaheuristics International Conference (2001)Google Scholar
  59. 59.
    Resende, M.G.: Computing approximate solutions of the maximum covering problem using GRASP. Journal of Heuristics 4, 161–171 (1998)zbMATHCrossRefGoogle Scholar
  60. 60.
    Resende, M.G., Ribeiro, C.C.: A GRASP for graph planarization. Journal of Heuristics 4, 171–181 (1998)CrossRefGoogle Scholar
  61. 61.
    Ribeiro, C.C., Uchoa, E., Werneck, R.F.: A hybrid GRASP with perturbations for the Steiner problem in graphs. INFORMS Journal on Computing 14, 228–246 (2002)CrossRefMathSciNetGoogle Scholar
  62. 62.
    Resende, M.G., Ribeiro, C.C.: Greedy randomized adaptive search procedures. Technical Report TD-53RSJY, AT&T Labs Research (2002)Google Scholar
  63. 63.
    Feo, T.A., Resende, M.G.: A probabilistic heuristic for a computationally difficult set covering problem. Operation Research Letters 8, 67–71 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Mladenovic, N., Hansen, P.: Variable neighbourhood search. Computers and Operations Research 24, 1097–1100 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Hansen, P., Mladenovic, N.: Variable neighbourhood search: Principles and applications. European Journal of Operational Research 130, 449–467 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    Hansen, P., Mladenovic, N.: A Tutorial on variable neighborhood search. Technical Report - GERAD and Mathematical Institute, SANU, Belgrade (2003)Google Scholar
  68. 68.
    Fleszar, K., Hindi, K.S.: New heuristics for one-dimensional bin-packing. Computers and Operations Research 29, 821–839 (2002)zbMATHCrossRefGoogle Scholar
  69. 69.
    Hansen, P., Mladenovic, N., Dragan, U.: Variable neighborhood search for the maximum clique. Discrete Applied Mathematics 145, 117–125 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Liberti, L., Draži, M.: Variable neighbourhood search for the global optimization of constrained NLPs. In: Proceedings of Global Optimization, pp. 1–5 (2005)Google Scholar
  71. 71.
    Burke, E.K., Cowling, P., Keuthen, R.: Implementation report: Variable neighbourhood search. Technical Report - University of Nottingham, NG8 1BB (2000)Google Scholar
  72. 72.
    Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph coloring. European Journal of Operational Research 151, 379–388 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization 3, 379–397 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  74. 74.
    Caporossi, G., Hansen, P.: Variable neighborhood search for extremal graphs: Three ways to automate finding conjectures. Discrete Mathematics 276, 81–94 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    Pérez, J.A., Moreno-Vega, J.M., Martín, I.R.: Variable neighbourhood tabu search and its application to the median cycle problem. European Journal of Operational Research 151, 365–378 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Fleszar, K., Hindi, K.H.: Solving the resource-constrained project scheduling problem by a variable neighbourhood search. European Journal of Operational Research 155, 402–413 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    Burke, E.K., Causmaecker, P.D., Petrovic, S., Berghe, G.V.: Variable neighbourhood search for nurse rostering problems. In: Resende, M.G., Sousa, J.P. (eds.) Metaheuristics: Computer Decision-Making, pp. 153–172. Kluwer, Norwell (2003)Google Scholar
  78. 78.
    Pérez, J.A., Mladenovic, N., Batista, B.M., Amo, I.J.: Variable Neighbourhood Search. Springer, New York (2006)Google Scholar
  79. 79.
    Lusa, A., Potts, C.N.: A variable neighbourhood search algorithm for the constrained task allocation problem. Journal of the Operational Research Society 59(6), 812–822 (2007)CrossRefGoogle Scholar
  80. 80.
    Lejeune, M.A.: A variable neighborhood decomposition search method for supply chain management planning problems. European Journal of Operational Research 175(2), 959–976 (2006)zbMATHCrossRefGoogle Scholar
  81. 81.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  82. 82.
    Buffa, E.S., Armour, G.C., Vollmann, T.E.: Allocating facilities with CRAFT. Harvard Business Review, 136–158 (1964)Google Scholar
  83. 83.
    Saez, Y., Isasi, P., Segovia, J., Hernandez, J.C.: Reference chromosome to overcome user fatigue in IEC. New Generation Computing 23, 129–142 (2005)CrossRefGoogle Scholar
  84. 84.
    Saez, Y., Isasi, P., Segovia, J.: Interactive evolutionary computation algorithms applied to solve Rastrigin test functions. In: Proceedings of the 4th IEEE International Workshop on Soft Computing as Transdisciplinary Science and Technology, pp. 682–691 (2005)Google Scholar
  85. 85.
    Dawkins, R.: The Selfish Gene. Oxford University Press, New York (1976)Google Scholar
  86. 86.
    Gómez-Pulido, J.: Web site of Net-Centric Optimization (OPLINK:UNEX) (2006), http://oplink.unex.es/rnd (accessed April 1, 2008)
  87. 87.
    Mayer, U.: NBenchProject (2007), http://www.tux.org/~mayer/linux/ (accessed December 1, 2007)
  88. 88.
    Anderson, D.P.: BOINC (2007), http://boinc.berkeley.edu (accessed June 1, 2008)
  89. 89.
    Anderson, D.P.: BOINC: A system for public-Resource computing and storage. In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, pp. 4–10 (2004)Google Scholar
  90. 90.
    RND@home (2008), http://arcoboinc.unex.es/rnd (accessed March 1, 2008)
  91. 91.
    LinEx (2008), http://www.linex.org (accessed March 1, 2008)
  92. 92.
    Buell, D., El-Ghazawi, T., Gaj, K., Kindratenko, V.: High-performance reconfigurable computting. Computer 40, 23–27 (2007)CrossRefGoogle Scholar
  93. 93.
    Vega-Rodríguez, M.A., Sánchez-Pérez, J.M., Gómez-Pulido, J.A.: Guest editors’ introduction - special issue on FPGAs: Applications and designs. Microprocessors and Microsystems 28, 193–196 (2004)CrossRefGoogle Scholar
  94. 94.
    Hsiao, J.M., Tsai, C.J.: Analysis of an SOC architecture for MPEG reconfigurable video coding framework. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 761–764 (2007)Google Scholar
  95. 95.
    Gómez-Pulido, J.A., Vega-Rodríguez, M.A., Pérez, J.M., Mendes, S.P.: Diseño y prototipado de un processador para el cálculo de la cobertura en el diseño de redes de radiocomunicaciones. In: VII Jornadas de Computación Reconfigurable y Aplicaciones (2007)Google Scholar
  96. 96.
    Alba, E., Molina, G., Chicano, F.: Optimal placement of antennae using metaheuristics. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds.) NMA 2006. LNCS, vol. 4310, pp. 214–222. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  97. 97.
    Alba, E., Cotta, C., Chicano, F., Nebro, A.J.: Parallel evolutionary algorithms in telecommunications: Two case studies. In: Proceedings of Congreso Argentino de Ciencias de la Computación (2002)Google Scholar
  98. 98.
    Xilinx Inc., Xilinx (2008), http://www.xilinx.com (accessed March 1, 2008)
  99. 99.
    Xess Corporation (200) Xess, http://www.xess.com (accessed March 1, 2008)
  100. 100.
    Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G., Stewart, W.: Designing and reporting on computational experiments with heuristic methods. Journal of Heuristics 1, 9–32 (1996)CrossRefGoogle Scholar
  101. 101.
    Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm. In: Proceedings of the 6th International Mendel Conference on Soft Computing, pp. 76–83 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sílvio P. Mendes
    • 1
  • Juan A. Gómez-Pulido
    • 2
  • Miguel A. Vega-Rodríguez
    • 2
  • Juan M. Sánchez-Pérez
    • 2
  • Yago Sáez
    • 3
  • Pedro Isasi
    • 3
  1. 1.School of Technology and ManagementPolytechnic Institute of LeiriaLeiriaPortugal
  2. 2.University of ExtremaduraCaceresSpain
  3. 3.University Carlos III of MadridLeganésSpain

Personalised recommendations