Extremal Optimisation for Assignment Type Problems

  • Marcus Randall
  • Tim Hendtlass
  • Andrew Lewis
Part of the Studies in Computational Intelligence book series (SCI, volume 210)


Extremal optimisation is an emerging nature inspired meta-heuristic search technique that allows a poorly performing solution component to be removed at each iteration of the algorithm and replaced by a random value. This creates opportunity for assignment type problems as it enables a component to be moved to a more appropriate group. This may then drive the system towards an optimal solution. In this chapter, the general capabilities of extremal optimisation, in terms of assignment type problems, are explored. In particular, we provide an analysis of the moves selected by extremal optimisation and show that it does not suffer from premature convergence. Following this we develop a model of extremal optimisation that includes techniques to a) process constraints by allowing the search to move between feasible and infeasible space, b) provide a generic partial feasibility restoration heuristic to drive the solution towards feasible space, and c) develop a population model of the meta-heuristic that adaptively removes and introduces new members in accordance with the principles of self-organised criticality. A range of computational experiments on prototypical assignment problems, namely generalised assignment, bin packing, and capacitated hub location, indicate that extremal optimisation can form the foundation for a powerful and competitive meta-heuristic for this class of problems.


Local Search Good Move Extremal Optimisation Feasibility Restoration Neutral Move 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvim, A., Aloise, D., Glover, F., Ribeiro, C.: Local search for the bin packing problem. In: Extended Abstracts of the 3rd Metaheuristics International Conference, pp. 7–12 (1999)Google Scholar
  2. 2.
    Bak, P.: How Nature Works. Springer, New York (1996)zbMATHGoogle Scholar
  3. 3.
    Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of evolution. Physical Review Letters 71, 4083–4086 (1993)CrossRefGoogle Scholar
  4. 4.
    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: An explanation of 1/f noise. Physical Review Letters 59, 381–384 (1987)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Beasley, J.: OR-Library: Distributing test problems by electronic mail. Journal of the Operational Research Society 41, 1069–1072 (1990)CrossRefGoogle Scholar
  6. 6.
    Boettcher, S., Percus, A.: Extremal optimization: Methods derived from co-evolution. In: Proceedings of the Genetic and Evolutionary and Computation Conference, pp. 825–832. Morgan Kaufmann, San Francisco (1999)Google Scholar
  7. 7.
    Boettcher, S., Percus, A.: Combining local search with co-evolution in a remarkably simple way. In: Proceedings of the Congress on Evolutionary Computation, pp. 1578–1584. IEEE Service Center, Piscataway (2000)Google Scholar
  8. 8.
    Boettcher, S., Percus, A.: Nature’s way of optimizing. Artificial Intelligence 119, 275–286 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    Boettcher, S., Percus, A.: Extremal optimization for graph partitioning. Physical Review E 64 (2001)Google Scholar
  10. 10.
    Boettcher, S., Percus, A.: Extremal optimization: An evolutionary local search algorithm. In: Bhargava, H., Ye, N. (eds.) Computational Modeling and Problem Solving in the Networked World. Interfaces in Computer Science and Operations Research, pp. 61–77. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  11. 11.
    Chu, P., Beasley, J.: A genetic algorithm for the generalised assignment problem. Computers and Operations Research 24, 17–23 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Costa, D., Hertz, A.: Ants can colour graphs. Journal of the Operational Research Society 48, 295–305 (1997)zbMATHCrossRefGoogle Scholar
  13. 13.
    Dorigo, M., Di Caro, G.: The ant colony optimization meta-heuristic. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 11–32. McGraw-Hill, London (1999)Google Scholar
  14. 14.
    Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Physical Review E 72 (2005)Google Scholar
  15. 15.
    Ernst, A., Krishnamoorthy, M.: Solution algorithms for the capacitated single allocation hub location problem. Annals of Operations Research 86, 141–159 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Tech. Rep. CP 106 - P4, CRIF Industrial Management and Automation, 50 Av. F.D. Roosevelt, B-1050 Brussels, Belgium (1994)Google Scholar
  17. 17.
    Galski, R., de Sousa, F., Ramos, F., Muraoka, I.: Spacecraft thermal design with the generalized extremal optimization algorithm. In: Orlande, H., Colaco, J. (eds.) Proceedings of Inverse Problems, Design and Optimization, pp. 61–75 (2004)Google Scholar
  18. 18.
    Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Reading (1989)zbMATHGoogle Scholar
  19. 19.
    Gómez-Meneses, P., Randall, M.: Extremal optimisation with a penalty approach for the multidimensional knapsack problem. In: Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 229–238. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    Hendtlass, T., Randall, M.: Extremal optimisation for bin packing. In: Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 220–228. Springer, Heidelberg (2008)Google Scholar
  21. 21.
    Kampke, T.: Simulated annealing: Use of a new tool in bin packing. Annals of Operations Research 16, 327–332 (1988)CrossRefGoogle Scholar
  22. 22.
    Kennedy, J., Eberhart, R.: The particle swam: Social adaptation in social information-processing systems. In: New Ideas in Optimization, pp. 379–387. McGraw-Hill, London (1999)Google Scholar
  23. 23.
    Levine, J., Ducatelle, F.: Ant colony optimisation and local search for bin packing and cutting stock problems. Journal of the Operational Research Society 55, 705–716 (2004)zbMATHCrossRefGoogle Scholar
  24. 24.
    Martello, S., Toth, P.: An algorithm for the generalized assignment problem. In: Proceedings of the 9th International Federation of Operational Research Societies’ Conference, Hamburg, Germany, pp. 589–603 (1981)Google Scholar
  25. 25.
    Middleton, A.: Improved extremal optimization for the ising spin glass. Physical Review E 69 (2004)Google Scholar
  26. 26.
    Moser, I., Hendtlass, T.: On the behaviour of extremal optimisation when solving problems with hidden dynamics. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS, vol. 4031, pp. 292–301. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Moser, I., Hendtlass, T.: Solving problems with hidden dynamics - comparison of extremal optimisation and ant colony system. In: Proceedings of the Congress on Evolutionary Computation, pp. 1248–1255 (2006)Google Scholar
  28. 28.
    Moser, I., Hendtlass, T.: Solving dynamic single-runway aircraft landing problems with extremal optimisation. In: Proceedings of the IEEE Symposium on Computational Intelligence in Scheduling, pp. 206–211 (2007)Google Scholar
  29. 29.
    Randall, M.: Enhancements to extremal optimisation for generalised assignment. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS, vol. 4828, pp. 369–380. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Randall, M.: Solution approaches for the capacitated single allocation hub location problem using ant colony optimisation. Journal of Computational Optimization and Applications 39, 239–261 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Randall, M., Lewis, A.: An extended extremal optimisation model for parallel architectures. In: Proceedings of the 2nd IEEE International e-Science and Grid Computing Conference (Workshop on Biologically-inspired Optimisation Methods for Parallel and Distributed Architectures: Algorithms, Systems and Applications). IEEE Computer Society, Los Alamitos (2006)Google Scholar
  32. 32.
    Shmygelska, A.: An extremal optimization search method for the protein folding problem: The Go-model example. In: Proceedings of the Companion to the Genetic and Evolutionary Computation Conference, pp. 2572–2579. ACM, New York (2007)Google Scholar
  33. 33.
    Xiaodong, D., Cunrui, W., Xiangdong, L., Yanping, L.: Web community detection model using particle swarm optimization. In: Proceedings of the Congress on Evolutionary Computation, pp. 1074–1079 (2008)Google Scholar
  34. 34.
    Zhou, T., Bai, W., Cheng, L., Wang, B.: Continuous extremal optimization for Lennard-Jones clusters. Physical Review E 72 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marcus Randall
    • 1
  • Tim Hendtlass
    • 2
  • Andrew Lewis
    • 3
  1. 1.School of Information TechnologyBond UniversityQueenslandAustralia
  2. 2.Faculty of Information and Communication TechnologySwinburne University of TechnologyVictoriaAustralia
  3. 3.Institute for Integrated and Intelligent SystemsGriffith UniversityQueenslandAustralia

Personalised recommendations