Advertisement

Applications of Parallel Platforms and Models in Evolutionary Multi-Objective Optimization

  • Antonio López Jaimes
  • Carlos A. Coello Coello
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 210)

Abstract

This chapter presents a review of modern parallel platforms and the way in which they can be exploited to implement parallel multi-objective evolutionary algorithms. Regarding parallel platforms, a special emphasis is given to global metacomputing which is an emerging form of parallel computing with promising applications in evolutionary (both multi- and singleobjective) optimization. In addition, we present the well-known models to parallelize evolutionary algorithms (i.e., master-slave, island, diffusion and hybrid models) describing some possible strategies to incorporate these models in the context of multi-objective optimization. Since an important concern in parallel computing is performance assessment, the chapter also presents how to apply parallel performance measures in multi-objective evolutionary algorithms taking into consideration their stochastic nature. Finally, we present a selection of current parallel multi-objective evolutionary algorithms that integrate novel strategies to address multi-objective issues.

Keywords

Pareto Front Island Model Multiobjective Evolutionary Algorithm True Pareto Front Volunteer Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    distributed.net project home Page (1997), http://www.distributed.net
  2. 2.
    SETI@home project home Page (1999), http://setiathome.berkeley.edu
  3. 3.
    Akl, S.G., Lindon, L.F.: Paradigms admitting superunitary behaviour in parallel computation. In: Buchberger, B., Volkert, J. (eds.) CONPAR 1994 and VAPP 1994. LNCS, vol. 854, pp. 301–312. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Alba Torres, E.: Parallel evolutionary algorithms can achieve super-linear performance. Information Processing Letters 82(1), 7–13 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Alba Torres, E., Troya Linero, J.M.: A survey of parallel distributed genetic algorithms. Complexity 4(4), 31–51 (1999)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Alba Torres, E., Troya Linero, J.M.: Analyzing synchronous and asynchronous parallel distributed genetic algorithms. Future Generation Computer Systems 17(4), 451–465 (2001)CrossRefGoogle Scholar
  7. 7.
    Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the AFIPS 1967, spring joint computer conference, April 18-20, 1967, pp. 483–485. ACM, New York (1967), http://doi.acm.org/10.1145/1465482.1465560 CrossRefGoogle Scholar
  8. 8.
    August, M.C., Brost, G.M., Hsiung, C.C., Schiffleger, A.J.: Cray X-MP: The birth of a supercomputer. Computer 22(1), 45–52 (1989), http://dx.doi.org/10.1109/2.19822 CrossRefGoogle Scholar
  9. 9.
    Belding, T.C.: The distributed genetic algorithm revisited. In: Eshelman, L. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 114–121. Morgan Kaufmann, San Francisco (1995)Google Scholar
  10. 10.
    Bell, G.: Ultracomputers: A teraflop before its time. Communications of the ACM 35(8), 27–47 (1992)CrossRefGoogle Scholar
  11. 11.
    Bell, G.: Bell’s law for the birth and death of computer classes. Communications of the ACM 51(1), 86–94 (2008), http://doi.acm.org/10.1145/1327452.1327453 CrossRefGoogle Scholar
  12. 12.
    Blank, T.: The MasPar MP-1 architecture. In: Compcon Spring 1990. Intellectual Leverage. Digest of Papers. Thirty-Fifth IEEE Computer Society International Conference, pp. 20–24 (1990)Google Scholar
  13. 13.
    Branke, J., Kaußler, T., Schmeck, H.: Guidance in Evolutionary Multi-Objective Optimization. Advances in Engineering Software 32, 499–507 (2001)zbMATHCrossRefGoogle Scholar
  14. 14.
    Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.: Do Additional Objectives Make a Problem Harder? In: Thierens, D. (ed.) 2007 Genetic and Evolutionary Computation Conference (GECCO 2007), vol. 1, pp. 765–772. ACM Press, London (2007)CrossRefGoogle Scholar
  15. 15.
    Cantú Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, Boston (2002)Google Scholar
  16. 16.
    Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)zbMATHGoogle Scholar
  17. 17.
    Collette, Y., Siarry, P.: Multiobjective Optimization. Principles and Case Studies. Springer, Heidelberg (2003)Google Scholar
  18. 18.
    Crowl, L.A.: How to measure, present, and compare parallel performance. IEEE Parallel Distrib. Technol. 2(1), 9–25 (1994), http://dx.doi.org/10.1109/88.281869 CrossRefGoogle Scholar
  19. 19.
    de Toro Negro, F., Ortega, J., Ros, E., Mota, S., Paechter, B., Martin, J.M.: PSFGA: Parallel Processing and Evolutionary Computation for Multiobjective Optimisation. Parallel Computing 30(5-6), 721–739 (2004)Google Scholar
  20. 20.
    Deb, K.: Multi-objective Evolutionary Optimization: Past, Present and Future. In: Parmee, I.C. (ed.) Proceedings of the Fourth International Conference on Adaptive Computing in Design and Manufacture (ACDM 2000), PEDC, University of Plymouth, UK, pp. 225–236. Springer, London (2000)Google Scholar
  21. 21.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)zbMATHGoogle Scholar
  22. 22.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-Objective Optimization Test Problems. In: Congress on Evolutionary Computation (CEC 2002), vol. 1, pp. 825–830. IEEE Service Center, Piscataway (2002)CrossRefGoogle Scholar
  23. 23.
    Deb, K., Mohan, M., Mishra, S.: Towards a Quick Computation of Well-Spread Pareto-Optimal Solutions. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 222–236. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Dongarra, J., Sterling, T., Simon, H., Strohmaier, E.: High-performance computing: Clusters, constellations, MPPs, and future directions. Computing in Science and Engineering 7(2), 51–59 (2005), http://doi.ieeecomputersociety.org/10.1109/MCSE.2005.34 CrossRefGoogle Scholar
  25. 25.
    Duncan, R.: A survey of parallel computer architectures. Computer 23(2), 5–16 (1990), http://dx.doi.org/10.1109/2.44904 CrossRefGoogle Scholar
  26. 26.
    Edgeworth, F.Y.: Mathematical Physics. P. Keagan, London (1881)Google Scholar
  27. 27.
    Eklund, S.E.: A massively parallel architecture for distributed genetic algorithms. Parallel Computing 30(5-6), 647–676 (2004), http://dx.doi.org/10.1016/j.parco.2003.12.009 CrossRefGoogle Scholar
  28. 28.
    Flynn, M.J.: Some computer organizations and their effectiveness. IEEE Transactions on Computers 21(9), 948–960 (1972)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Foster, I., Kesselman, C. (eds.): The grid: blueprint for a new computing infrastructure. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  30. 30.
    Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222 (2001), http://dx.doi.org/10.1177/109434200101500302 CrossRefGoogle Scholar
  31. 31.
    Giloi, W.K.: Towards a taxonomy of computer architecture based on the machine data type view. SIGARCH Comput. Archit. News 11(3), 6–15 (1983)CrossRefGoogle Scholar
  32. 32.
    Gustafson, J.L.: Fixed time, tiered memory, and superlinear speedup. In: Proceedings of the Fifth Distributed Memory Computing Conference, DMCC5 (1990)Google Scholar
  33. 33.
    Helmbold, D.P., McDowell, C.E.: Modeling speedup (n) greater than n. IEEE Trans. Parallel Distrib. Syst. 1(2), 250–256 (1990), http://dx.doi.org/10.1109/71.80148 CrossRefMathSciNetGoogle Scholar
  34. 34.
    Hillis, W.D.: The Connection Machine. MIT Press, Cambridge (1989)Google Scholar
  35. 35.
    Hiroyasu, T., Miki, M., Watanabe, S.: The New Model of Parallel Genetic Algorithm in Multi-Objective Optimization Problems—Divided Range Multi-Objective Genetic Algorithm. In: 2000 Congress on Evolutionary Computation, vol. 1, pp. 333–340. IEEE Service Center, Piscataway (2000)Google Scholar
  36. 36.
    Johnson, E.E.: Completing an MIMD multiprocessor taxonomy. SIGARCH Computure Architecture News 16(3), 44–47 (1988), http://doi.acm.org/10.1145/48675.48682 CrossRefGoogle Scholar
  37. 37.
    Karp, A.H., Flatt, H.P.: Measuring parallel processor performance. Communications of the ACM 33(5), 539–543 (1990)CrossRefGoogle Scholar
  38. 38.
    Knowles, J., Corne, D.: Properties of an Adaptive Archiving Algorithm for Storing Nondominated Vectors. IEEE Transactions on Evolutionary Computation 7(2), 100–116 (2003)CrossRefGoogle Scholar
  39. 39.
    Kumar, V., Ananth Grama, G.K., Gupta, A.: Introduction to Parallel Computing: design and analysis of parallel algorithms. Benjamin Cummings Publishing Company, Redwood City (1994)zbMATHGoogle Scholar
  40. 40.
    León, C., Miranda, G., Segura, C.: Parallel hyperheuristic: a self-adaptive island-based model for multi-objective optimization. In: GECCO 2008: Proceedings of the 10th annual conference on Genetic and evolutionary computation, pp. 757–758. ACM, New York (2008), http://doi.acm.org/10.1145/1389095.1389241 CrossRefGoogle Scholar
  41. 41.
    Licklider, J.C.R., Taylor, R.W.: The computer as a communication device. Science and Technology 76, 21–31 (1968)Google Scholar
  42. 42.
    Lin, S.C., Punch III, W.F., Goodman, E.D.: Coarse-grain genetic algorithms, categorization and new approaches. In: Sixth IEEE Symposium on Parallel and Distributed Processing, pp. 28–37. IEEE Computer Society Press, Dallas (1994)Google Scholar
  43. 43.
    Lizárraga Lizárraga, G., Hernández Aguirre, A., Botello Rionda, S.: G-metric: an m-ary quality indicator for the evaluation of non-dominated sets. In: GECCO 2008: Proceedings of the 10th annual conference on Genetic and evolutionary computation, pp. 665–672. ACM, New York (2008), http://doi.acm.org/10.1145/1389095.1389227 CrossRefGoogle Scholar
  44. 44.
    López Jaimes, A., Coello Coello, C.A.: MRMOGA: A New Parallel Multi-Objective Evolutionary Algorithm Based on the Use of Multiple Resolutions. Concurrency and Computation: Practice and Experience 19(4), 397–441 (2007)CrossRefGoogle Scholar
  45. 45.
    López Jaimes, A., Coello Coello, C.A., Chakraborty, D.: Objective Reduction Using a Feature Selection Technique. In: 2008 Genetic and Evolutionary Computation Conference (GECCO 2008), pp. 674–680. ACM Press, Atlanta (2008)Google Scholar
  46. 46.
    Luna, F., Nebro, A., Dorronsoro, B., Alba, E., Bouvry, P., Hogie, L.: Optimal Broadcasting in Metropolitan MANETs Using Multiobjective Scatter Search. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 255–266. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  47. 47.
    Meuer, H.W.: The TOP500 project: Looking back over 15 years of supercomputing experience. Informatik-Spektrum 31(3), 203–222 (2008), http://dx.doi.org/10.1007/s00287-008-0240-6 CrossRefGoogle Scholar
  48. 48.
    Nebro, A., Luna, F., Talbi, E.G., Alba, E.: Parallel Multiobjective Optimization. In: Alba, E. (ed.) Parallel Metaheuristics, pp. 371–394. Wiley-Interscience, New Jersey (2005)CrossRefGoogle Scholar
  49. 49.
    Obayashi, S., Sasaki, D.: Multiobjective Aerodynamic Design and Visualization of Supersonic Wings by Using Adaptive Range Multiobjective Genetic Algorithms. In: Coello Coello, C.A., Lamont, G.B. (eds.) Applications of Multi-Objective Evolutionary Algorithms, pp. 295–315. World Scientific, Singapore (2004)Google Scholar
  50. 50.
    Okuda, T., Hiroyasu, T., Miki, M., Watanabe, S.: DCMOGA: Distributed cooperation model of multi-objective genetic algorithm. In: Proceedings of the PPSN/SAB Workshop on Multiobjective Problem Solving from Nature II (MPSN-II) (2002)Google Scholar
  51. 51.
    Osyczka, A.: Evolutionary Algorithms for Single and Multicriteria Design Optimization. Physica Verlag, Germany (2002)zbMATHGoogle Scholar
  52. 52.
    Pareto, V.: Cours D’Economie Politique, vol. I and II. F. Rouge, Lausanne (1896)Google Scholar
  53. 53.
    Sarmenta, L.F.G.: Volunteer computing. PhD thesis, Massachusetts Institute of Technology (2001)Google Scholar
  54. 54.
    Sawai, H., Adachi, S.: Parallel distributed processing of a parameter-free GA by using hierarchical migration methods. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999), vol. 1, pp. 579–586. Morgan Kaufmann, San Francisco (1999)Google Scholar
  55. 55.
    Stadler, W.: Fundamentals of multicriteria optimization. In: Stadler, W. (ed.) Multicriteria Optimization in Engineering and the Sciences, pp. 1–25. Plenum Press, New York (1988)Google Scholar
  56. 56.
    Streichert, F., Ulmer, H., Zell, A.: Parallelization of Multi-objective Evolutionary Algorithms Using Clustering Algorithms. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 92–107. Springer, Heidelberg (2005)Google Scholar
  57. 57.
    Talbi, E.G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello Coello, C.A.: Parallel Approaches for Multi-objective Optimization. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.) Multiobjective Optimization. Interactive and Evolutionary Approaches. LNCS, vol. 5252, pp. 349–372. Springer, Heidelberg (2008)Google Scholar
  58. 58.
    Tan, K., Khor, E., Lee, T.: Multiobjective Evolutionary Algorithms and Applications. Springer, London (2005)zbMATHGoogle Scholar
  59. 59.
    Tanenbaum, A.S., van Steen, M.: Distributed Systems: Principles and Paradigms. Prentice Hall, Upper Saddle River (2002)zbMATHGoogle Scholar
  60. 60.
    Teich, J., Zitzler, E., Bhattacharyya, S.S.: 3D Exploration of Software schedules for DSP Algorithms. In: 7th International Workshop on Hardware/Software Codesign (CODES 1999), pp. 168–172 (1999)Google Scholar
  61. 61.
    Tomassini, M.: Parallel and distributed evolutionary algorithms: A review. In: Miettinen, K., Mäkelä, M., Neittaanmäki, P., Periaux, J. (eds.) Evolutionary Algorithms in Engineering and Computer Science, pp. 113–133. John Wiley and Sons, Chichester (1999)Google Scholar
  62. 62.
    Van Veldhuizen, D.A., Zydallis, J.B., Lamont, G.B.: Considerations in Engineering Parallel Multiobjective Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 7(2), 144–173 (2003)CrossRefGoogle Scholar
  63. 63.
    Vrugt, J.A., Robinson, B.A.: Improved evolutionary optimization from genetically adaptive multimethod search. Proceedings of the National Academy of Sciences of the United States of America 104(3), 708–711 (2007)CrossRefGoogle Scholar
  64. 64.
    Vyssotsky, V.A., Corbató, F.J., Graham, R.M.: Structure of the Multics Supervisor. In: Proceedings of the AFIPS, Fall Joint Computer Conference (FJCC), Spartan Books, Las Vegas, Nevada, vol. 27, Part 1, pp. 203–212 (1965)Google Scholar
  65. 65.
    Zhu, Z.Y., Leung, K.S.: An Enhanced Annealing Genetic Algorithm for Multi-Objective Optimization Problems. In: Langdon, W., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M., Schultz, A., Miller, J., Burke, E., Jonoska, N. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 658–665. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  66. 66.
    Zitzler, E., Teich, J., Bhattacharyya, S.S.: Evolutionary Algorithm Based Exploration of Software Schedules for Digital Signal Processors. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999), vol. 2, pp. 1762–1769. Morgan Kaufmann, San Francisco (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Antonio López Jaimes
    • 1
  • Carlos A. Coello Coello
    • 1
  1. 1.Departamento de ComputaciónCINVESTAV-IPN (Evolutionary Computation Group)MéxicoMéxico

Personalised recommendations