Advertisement

Evolution’s Niche in Multi-Criterion Problem Solving

  • Kalyanmoy Deb
Chapter
  • 607 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 210)

Abstract

In a short span of about 15 years, evolutionary multi-objective optimization (EMO) has progressed on a fast track in proposing, implementing, and applying efficient methodologies based on nature-inspired computational algorithms for optimization. In this chapter, we briefly describe the original motivation for developing EMO algorithms and provide an account of some successful problem domains on which EMO has demonstrated a clear edge over their classical counterparts. More success studies exist and many more problem areas are needed to be explored. Hopefully, this chapter provides an indication and flavor of some such problem domains which may get benefited from a systematic application of an EMO procedure.

Keywords

Multiobjective Optimization Reference Point Method Reservation Point Light Beam Search Scalarized Generate Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bleuler, S., Brack, M., Zitzler, E.: Multiobjective genetic programming: Reducing bloat using spea2. In: Proceedings of the 2001 Congress on Evolutionary Computation, pp. 536–543 (2001)Google Scholar
  2. 2.
    Brockhoff, D., Zitzler, E.: Dimensionality reduction in multiobjective optimization: The minimum objective subset problem. In: Operations Research Proceedings 2006, pp. 423–429 (2007)Google Scholar
  3. 3.
    Coello, C.C.: Treating objectives as constraints for single objective optimization. Engineering Optimization 32(3), 275–308 (2000)CrossRefGoogle Scholar
  4. 4.
    Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)zbMATHGoogle Scholar
  5. 5.
    Deb, K.: A robust evolutionary framework for multi-objective optimization. In: Proceedings of Genetic and Evolutionary Computation conference (GECCO 2008), pp. 633–640 (2008)Google Scholar
  6. 6.
    Deb, K., Saxena, D.: Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. In: Proceedings of the World Congress on Computational Intelligence (WCCI 2006), pp. 3352–3360 (2006)Google Scholar
  7. 7.
    Deb, K., Sindhya, K.: Deciphering innovative principles for optimal electric brushless d.c. permanent magnet motor design. In: Proceedings of the World Congress on Computational Intelligence (WCCI 2008), pp. 2283–2290. IEEE Press, Piscatway (2008)CrossRefGoogle Scholar
  8. 8.
    Deb, K., Srinivasan, A.: Innovization: Innovating design principles through optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2006), pp. 1629–1636. The Association of Computing Machinery (ACM), New York (2006)CrossRefGoogle Scholar
  9. 9.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  10. 10.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization, pp. 105–145. Springer-Verlag, London (2005)CrossRefGoogle Scholar
  11. 11.
    Deb, K., Sundar, J., Uday, N., Chaudhuri, S.: Reference point based multi-objective optimization using evolutionary algorithms. International Journal of Computational Intelligence Research (IJCIR) 2(6), 273–286 (2006)Google Scholar
  12. 12.
    De Jong, E.D., Watson, R.A., Pollack, J.B.: Reducing bloat and promoting diversity using multi-objective methods. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 11–18 (2001)Google Scholar
  13. 13.
    Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. Journal of the Association for Computing Machinery 22(4), 469–476 (1975)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE Transactions on Evolutionary Computation 11(1), 56–76 (2007)CrossRefGoogle Scholar
  15. 15.
    Holland, J.: Concerning efficient adaptive systems. In: Yovits, M., Jacobi, G., Goldstein, G. (eds.) Self-Organizing Systems, pp. 215–230. Spartan Press (1962)Google Scholar
  16. 16.
    Knowles, J.D., Corne, D.W., Deb, K. (eds.): Multiobjective problem solving from nature. Springer Natural Computing Series. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  17. 17.
    Jahn, J.: Vector optimization. Springer, Berlin (2004)zbMATHGoogle Scholar
  18. 18.
    Jaszkiewicz, A., Slowinski, R.: The light beam search approach – An overview of methodology an applications. European Journal of Operation Research 113, 300–314 (1999)zbMATHCrossRefGoogle Scholar
  19. 19.
    Messac, A., Mattson, C.A.: Normal constraint method with guarantee of even representation of complete pareto frontier. AIAA Journal (in press)Google Scholar
  20. 20.
    Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)zbMATHGoogle Scholar
  21. 21.
    Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective optimization. In: GECCO 2005: Proceedings of the 2005 conference on genetic and evolutionary computation, pp. 763–769. ACM, New York (2005)CrossRefGoogle Scholar
  22. 22.
    Pryke, A., Mostaghim, S., Nazemi, A.: Heatmap visualization of population based multi objective algorithms. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 361–375. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Saxena, D.K., Deb, K.: Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: Employing correntropy and a novel maximum variance unfolding. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 772–787. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Shukla, P., Deb, K.: Comparing classical generating methods with an evolutionary multi-objective optimization method. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 311–325. Springer, Heidelberg (2005)Google Scholar
  25. 25.
    Sindhya, K., Deb, K., Miettinen, K.: A local search based evolutionary multi-objective optimization technique for fast and accurate convergence. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Applications, pp. 468–486. Springer, Berlin (1980)Google Scholar
  27. 27.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation Journal 8(2), 125–148 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kalyanmoy Deb
    • 1
    • 2
  1. 1.Department of Business TechnologyHelsinki School of EconomicsHelsinkiFinland
  2. 2.Department of Mechanical EngineeringIndian Institute of Technology KanpurIndia

Personalised recommendations