Emergence of Scale-Free Syntax Networks

  • Bernat Corominas-Murtra
  • Sergi Valverde
  • Ricard V. Solé
Chapter

Abstract

The evolution of human language allowed the efficient propagation of nongenetic information, thus creating a new form of evolutionary change. Language development in children offers the opportunity of exploring the emergence of such complex communication system and provides a window to understanding the transition from protolanguage to language. Here we present the first analysis of the emergence of syntax in terms of complex networks. A previously unreported, sharp transition is shown to occur around two years of age from a (pre-syntactic) tree-like structure to a scale-free, small world syntax network. The observed combinatorial patterns provide valuable data to understand the nature of the cognitive processes involved in the acquisition of syntax, introducing a new ingredient to understand the possible biological endowment of human beings which results in the emergence of complex language. We explore this problem by using a minimal, data-driven model that is able to capture several statistical traits, but some key features related to the emergence of syntactic complexity display important divergences.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509. MathSciNetCrossRefGoogle Scholar
  2. Bickerton, D. (1990). Language and species. Chicago: University of Chicago Press. Google Scholar
  3. Bloom, L., Hood, L., & Lightbown, P. (1974). Imitation in language development if when and why. Cognitive Psychology, 6, 380–420. CrossRefGoogle Scholar
  4. Bloom, L., Lightbown, P., & Hood, L. (1975). Structure and variation in child language. Monographs of the Society for Research in Child Development, 160(40). Google Scholar
  5. Bollobás, B. (2001). Random graphs. Cambridge: Cambridge University Press. MATHGoogle Scholar
  6. Chomsky, N. (1957) Syntactic structures. The Hague: Mouton & Co. Google Scholar
  7. Chomsky, N. (1988). Language and problems of knowledge. Cambridge: MIT Press. Google Scholar
  8. Christiansen, M. H., & Kirby, S. (2003). Language evolution: consensus and controversies. Trends in Cognitive Sciences, 7(7), 300–307. CrossRefGoogle Scholar
  9. Corominas-Murtra, B. (2007). Network statistics on early English syntax: structural criteria. arXiv:0704.3708.
  10. Deacon, T. W. (1997). The symbolic species: the co-evolution of language and the brain. New York: Norton. Google Scholar
  11. Dennet, D. C. (1995). Darwin’s dangerous idea. London: Penguin. Google Scholar
  12. Dorogovtsev, S. N., & Mendes, J. F. F. (2001). Language as an evolving word web. Proceedings of the Royal Society London. Series B, Biological Sciences, 268. Google Scholar
  13. Dorogovtsev, S. N., & Mendes, J. F. F. (2003). Evolution of networks. New York: Oxford University Press. MATHCrossRefGoogle Scholar
  14. Elman, J. L. (1993). Learning and development in neural networks: the importance of starting small. Cognition, 48(1), 71–99. CrossRefGoogle Scholar
  15. Erdös, P., & Rényi, A. (1959). On random graphs. Publicationes Mathemticae (Debrecen), 6, 290–297. MATHGoogle Scholar
  16. Ferrer-i-Cancho, R., & Solé, R. V. (2001). The small world of human language. Proceedings of the Royal Society London. Series B, Biological Sciences, 268. Google Scholar
  17. Ferrer-i-Cancho, R., & Solé, R. V. (2003). Least effort and the origins of scaling in human language. Proceedings of the National Academy of Sciences of the United States of America, 100, 788–791. MATHMathSciNetCrossRefGoogle Scholar
  18. Ferrer-i-Cancho, R., Köhler, R., & Solé, R. V. (2004). Patterns in syntactic dependency networks. Physical Revue E, 69, 051915. CrossRefGoogle Scholar
  19. Ferrer-i-Cancho, R., Riordan, O., & Bollobás, B. (2005). The consequences of Zipf’s law for syntax and symbolic reference. Proceedings of The Royal Society of London. Series B, Biological Sciences. Google Scholar
  20. Gould, S. J. (2002). The structure of evolutionary theory. Cambridge: Harvard University Press. Google Scholar
  21. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proceedings of The Royal Society of London. Series B, Biological Sciences, 205, 581–598. CrossRefGoogle Scholar
  22. Harremoës, P., & Topsoe, F. (2001). Maximum entropy fundamentals. Entropy, 3(3), 191–226. MathSciNetCrossRefGoogle Scholar
  23. Hauser, M. D., Chomsky, N., & Fitch, T. W. (2002). The faculty of language: what is it, who has it, and how did it evolve? Science, 298, 1569–1579. CrossRefGoogle Scholar
  24. Holland, P. W., & Leinhardt, S. (1970). A method for detecting structure in sociometric data. American Journal of Sociology, 70, 492–513. CrossRefGoogle Scholar
  25. Hudson, R. (2006). Language networks: the new word grammar. New York: Oxford University Press. Google Scholar
  26. Humboldt, W. V. (1999). On language: the diversity of human language construction and its influence on the mental development of the human species (2nd ed.). Cambridge: Cambridge University Press. Lomansky M. (trans.), Heath, P.L. (Eds.). Google Scholar
  27. Hurford, J. (1989). Biological evolution of the Saussurean sign as a component of the language acquisition device. Lingua, 77(2), 187–222. CrossRefGoogle Scholar
  28. Kauffman, S. A. (1993). The origins of order: self-organization and selection in evolution. London: Oxford University Press. Google Scholar
  29. Ke, J. (2007). Complex networks and human language. arXiv:cs/0701135.
  30. Komarova, N. L., & Niyogi, P. (2004). Optimizing the mutual intelligibility of linguistic agents in a shared world. Artificial Intelligence, 154(1–2), 1–42. MATHMathSciNetCrossRefGoogle Scholar
  31. Komarova, N., Niyogi, P., & Nowak, M. (2001). The evolutionary dynamics of grammar acquisition. Journal of Theoretical Biology, 209(1), 43–59. CrossRefGoogle Scholar
  32. Macwhinney, B. (2000). The CHILDES project: tools for analyzing talk (3rd ed.). Mahwah: Erlbaum. Google Scholar
  33. Macwhinney, B. (2005). The emergence of linguistic form in time. Connection Science, 17(3), 191–211. CrossRefGoogle Scholar
  34. Maynard-Smith, J., & Szathmàry, E. (1997). The major transitions in evolution. New York: University of New York Press. Google Scholar
  35. Melçuck, I. (1989). Dependency grammar: theory and practice. New York: Oxford University Press. Google Scholar
  36. Miller, G. A., & Chomsky, N. (1963). Finitary models of language users. In R. D. Luce, R. Bush, & E. Galanter (Eds.), Handbook of Mathematical Psychology (pp. 419–491, vol. 2). New York: Wiley. Google Scholar
  37. Newman, M. E. J. (2002). Assortative mixing in networks. Physical Revue Letters, 89, 208701. CrossRefGoogle Scholar
  38. Newport, E. L. (1990). Maturational constraints on language learning. Cognitive Science, 14(1), 11–28. CrossRefGoogle Scholar
  39. Niyogi, P. (2006). The computational nature of language learning and evolution. Cambridge: MIT Press. Google Scholar
  40. Nowak, M. A., & Krakauer, D. (1999). The evolution of language. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 8028–8033. CrossRefGoogle Scholar
  41. Oudeyer, P.-Y. (2006). Self-organization in the evolution of speech studies in the evolution of language. London: Oxford University Press. CrossRefGoogle Scholar
  42. Pinker, S. (1994). The language instinct. London: Penguin. Google Scholar
  43. Pinker, S., & Bloom, P. (1990). Natural language and natural selection. Behavioral and Brain Sciences, 13, 707–786. Google Scholar
  44. Radford, A. (1990). Syntactic theory and the acquisition of English syntax: the nature of early child grammars of English. Oxford: Blackwell. Google Scholar
  45. Sigman, M., & Cecchi, G. (2002). Global organization of the wordnet lexicon. Proc. Nat. Acad. Sci. USA, 99(3), 1742–1747. CrossRefGoogle Scholar
  46. Solé, R., & Goodwin, B. (2001). Signs of life: how complexity pervades biology. New York: Basic Books. Google Scholar
  47. Solé, R. V. (2005). Syntax for free? Nature, 434, 289. CrossRefGoogle Scholar
  48. Solé, R. V., & Valverde, S. (2006). Are network motifs the spandrels of cellular complexity? Trends in Ecology & Evolution, 21(8), 419–422. CrossRefGoogle Scholar
  49. Steels, L. (1997). The synthetic modelling of language origins. Evolution of Communication, 1(1), 1–34. CrossRefGoogle Scholar
  50. Steyvers, M., & Tenenbaum, J. B. (2005). The large-scale structure of semantic networks: statistical analyses and a model of semantic growth. Cognitive Science, 29, 41–78. CrossRefGoogle Scholar
  51. Szamadó, S., & Szathmàry, E. (2006). Selective scenarios for the emergence of natural language. Trends in Ecology and Evolution, 21(10), 555–561. CrossRefGoogle Scholar
  52. Szathmáry, E., Szatmáry, Z., Ittzés, P., Orbán, G., Zachár, I., Huszár, F., Fedor, A., Varga, M., & Számadó, S. (2007). In silico evolutionary developmental neurobiology and the origin of natural language. In C. Lyon, C. L. Nehaniv, & A. Cangelosi (Eds.), Emergence of communication and language (pp. 151–187). London: Springer. CrossRefGoogle Scholar
  53. Theakston, A. L., Lieven, E. V. M., Pine, J. M., & Rowland, C. F. (2001). The role of performance limitations in the acquisition of verb-argument structure: an alternative account. Journal of Child Language, 28, 127–152. CrossRefGoogle Scholar
  54. Veneziano, E., & Sinclair, H. (2000). The changing status of “filler syllables” on the way to grammatical morphemes. Journal of Child Language, 27, 461–500. CrossRefGoogle Scholar
  55. Wasserman, S., & Faust, K. (1994). Social network analysis. Cambridge: Cambridge University Press. Google Scholar
  56. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bernat Corominas-Murtra
    • 1
  • Sergi Valverde
    • 1
  • Ricard V. Solé
    • 1
    • 2
  1. 1.ICREA-Complex Systems LabUniversitat Pompeu FabraBarcelonaSpain
  2. 2.Santa Fe InstituteSanta FeUSA

Personalised recommendations