Skip to main content

Plasma Physics

  • Chapter
  • First Online:
Tailored Light 2

Part of the book series: RWTHedition ((RWTH))

Abstract

The energy of the laser radiation that is applied to the workpiece during laser material processing has to be transformed effectively into usable process energy. The normal light absorptivity at those wavelengths for which high-power lasers are available today is quite low in case of dielectrics and in case of metals its value lies in the 10–40% region.1 When exceeding a critical intensity in general an increase of the absorptivity can be observed [12, 14]. Figure 9.1 shows this behavior in case of processing Cu using a pulsed Nd:YAG laser. At small intensities the reflectivity corresponds to the normal reflectivity, after exceeding the critical value of the intensity the reflectivity decreases to a value of almost zero. The decrease of the reflectivity is accompanied by an increase of the energy coupling into the workpiece.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. G. Bekefi, Radiation Processes in Plasmas, Wiley, New York, 1966

    Google Scholar 

  2. E. Beyer, K. Behler, U. Petschke, and W. Sokolowski, Schweißen mit CO2-Lasern, Laser und Optoelektronik, Vol. 18, pp. 35–46, 1986

    Google Scholar 

  3. P. Cavaliere, G. Ferrante, and C. Leone, Particle-atom ionising collisions in the presence of a laser radiation field, J. Phys. B, Vol. 13, p. 4495, 1980

    Article  Google Scholar 

  4. H.W. Drawin and P. Felenbok, Data for Plasmas in Local Thermodynamic Equilibrium, Gauthier-Villars, Paris, 1965

    Google Scholar 

  5. W. Ebeling, W.D. Kraeft, and D. Kremp, Theory of Bound States and Ionization Equilibrium in Plasmas and Solids, Akademie-Verlag, Berlin, 1976

    Google Scholar 

  6. H.R. Griem, Plasma Spectroscopy, Mc-Graw-Hill, 1964

    Google Scholar 

  7. K. Günther, S. Lang, and R. Radtke, Electrical conductivity and charge carrier screening in weakly non-ideal plasmas, J. Phys. D: Appl. Phys., Vol. 16, p. 1235, 1983

    Article  Google Scholar 

  8. K. Günther and R. Radtke, Electrical Properties of Weakly Nonideal Plasmas, Birkhäuser, Basel, 1984

    Google Scholar 

  9. T. Holstein, Low Frequency Approximation to Free-Free Transition Probabilities, Pittsburgh, 1965

    Google Scholar 

  10. S. Ichimaru, Basic Principles of Plasma Physics, Benjamin/Cummings Publishing Company, London, 1973

    Google Scholar 

  11. J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York, 1975

    MATH  Google Scholar 

  12. E. Kocher and others, Dynamics of Laser Processing in Transparent Media, IEEE J-QE-8, 1972

    Google Scholar 

  13. A. Matsunawa, Beam – Plasma Interaction in Laser Materials Processing by Different Wavelength, 10.ter Internationaler Kongress LASER 91, 1991

    Google Scholar 

  14. W. Peschko, Abtragung fester Targets durch Laserstrahlung, 1981

    Google Scholar 

  15. A.N. Pirri, Plasma Energy Transfer to Metal Surfaces Irradiated by Pulsed Lasers, IAAJ., 16, 1979

    Google Scholar 

  16. Yu. P. Raizer, Laser-Induced Discharge Phenomena, Consultants Bureau, New York, 1977

    Google Scholar 

  17. F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw Hill, 1965

    Google Scholar 

  18. E. Beyer, Eunfluss des laserindizierten Plasmas beim Schweissen mit CO2-Lasern, Dissertation, TH Darmstadt, 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Wester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wester, R. (2011). Plasma Physics. In: Poprawe, R. (eds) Tailored Light 2. RWTHedition. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01237-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01237-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01236-5

  • Online ISBN: 978-3-642-01237-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics