Skip to main content

Noninvasive Respiratory Support in the Paediatric Patient

  • Chapter
  • First Online:
Pediatric and Neonatal Mechanical Ventilation

Abstract

Noninvasive ventilation (NIV) refers to all respiratory supports that do not require endotracheal interface. Continuous positive airway pressure (CPAP) support and noninvasive positive pressure ventilation (NPPV) are the most frequent techniques encountered. During the last decade, NIV has been increasingly used in paediatric patients. However, little has been written in the paediatric setting. Most of the reported experience originates from adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostoni E (1959) Volume-pressure relationships of the thorax and lung in the newborn. J Appl Physiol 14:909–913

    CAS  PubMed  Google Scholar 

  • Antonelli M, Conti G et al (2001) Predictors of failure of noninvasive positive pressure ventilation in patients with acute hypoxemic respiratory failure: a multi-center study. Intensive Care Med 27(11):1718–1728

    Article  CAS  PubMed  Google Scholar 

  • Antonelli M, Conti G et al (2007) A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome. Crit Care Med 35(1):18–25

    Article  PubMed  Google Scholar 

  • Beasley JM, Jones SE (1981) Continuous positive airway pressure in bronchiolitis. Br Med J (Clin Res Ed) 283(6305):1506–1508

    Article  CAS  Google Scholar 

  • Bernet V, Hug MI et al (2005) Predictive factors for the success of noninvasive mask ventilation in infants and children with acute respiratory failure. Pediatr Crit Care Med 6(6):660–664

    Article  PubMed  Google Scholar 

  • Cambonie G, Milesi C et al (2006) Clinical effects of heliox administration for acute bronchiolitis in young infants. Chest 129(3):676–682

    Article  PubMed  Google Scholar 

  • Cambonie G, Milesi C et al (2008) Nasal continuous positive airway pressure decreases respiratory muscles overload in young infants with severe acute viral bronchiolitis. Intensive Care Med 34(10):1865–1872

    Article  PubMed  Google Scholar 

  • Campion A, Huvenne H et al (2006) Non-invasive ventilation in infants with severe infection presumably due to respiratory syncytial virus: feasibility and failure criteria. Arch Pediatr 13(11):1404–1409

    Article  CAS  PubMed  Google Scholar 

  • Chatburn RL (2009) Which ventilators and modes can be used to deliver noninvasive ventilation? Respir Care 54(1):85–101

    PubMed  Google Scholar 

  • Chin K, Uemoto S et al (2005) Noninvasive ventilation for pediatric patients including those under 1-year-old undergoing liver transplantation. Liver Transpl 11(2):188–195

    Article  PubMed  Google Scholar 

  • Codazzi D, Nacoti M et al (2006) Continuous positive airway pressure with modified helmet for treatment of hypoxemic acute respiratory failure in infants and a preschool population: a feasibility study. Pediatr Crit Care Med 7(5):455–460

    Article  PubMed  Google Scholar 

  • Courtney SE, Aghai ZH et al (2003) Changes in lung volume and work of breathing: a comparison of two variable-flow nasal continuous positive airway pressure devices in very low birth weight infants. Pediatr Pulmonol 36(3):248–252

    Article  PubMed  Google Scholar 

  • Davis GM, Coates AL et al (1988) Direct measurement of static chest wall compliance in animal and human neonates. J Appl Physiol 65(3):1093–1098

    CAS  PubMed  Google Scholar 

  • Devlieger H, Daniels H et al (1991) The diaphragm of the newborn infant: anatomical and ultrasonographic studies. J Dev Physiol 16(6):321–329

    CAS  PubMed  Google Scholar 

  • Essouri S, Nicot F et al (2005) Noninvasive positive pressure ventilation in infants with upper airway obstruction: comparison of continuous and bilevel positive pressure. Intensive Care Med 31(4):574–580

    Article  PubMed  Google Scholar 

  • Essouri S, Chevret L et al (2006) Noninvasive positive pressure ventilation: five years of experience in a pediatric intensive care unit. Pediatr Crit Care Med 7(4):329–334

    Article  PubMed  Google Scholar 

  • Essouri S, Durand P et al (2008) Physiological effects of noninvasive positive ventilation during acute moderate hypercapnic respiratory insufficiency in children. Intensive Care Med 34(12):2248–2255

    Article  PubMed  Google Scholar 

  • Essouri S, Durand P et al (2011) Optimal level of nasal continuous positive airway pressure in severe viral bronchiolitis. Intensive Care Medecine 37(12):2002–2007

    Google Scholar 

  • Evans T (2001) International Consensus Conferences in Intensive Care Medecine: non-invasive positive pressure ventilation in acute respiratory failure. Organised jointly by the American Thoracic Society, the European Respiratory Society, the European Society of Intensive Care Medecine, and the Société de Réanimation de Langue Française, and approved by the ATS board of Directors, December 2000. Intensive Care Medecine 27(1):166–178

    Google Scholar 

  • Fauroux B, Pigeot J et al (2001) Chronic stridor caused by laryngomalacia in children: work of breathing and effects of noninvasive ventilatory assistance. Am J Respir Crit Care Med 164(10 Pt 1):1874–1878

    Article  CAS  PubMed  Google Scholar 

  • Fauroux B, Lavis JF et al (2005) Facial side effects during noninvasive positive pressure ventilation in children. Intensive Care Med 31(7):965–969

    Article  PubMed  Google Scholar 

  • Ferrer M, Esquinas A et al (2003) Noninvasive ventilation in severe hypoxemic respiratory failure: a randomized clinical trial. Am J Respir Crit Care Med 168(12):1438–1444

    Article  PubMed  Google Scholar 

  • Finder JD, Birnkrant D et al (2004) Respiratory care of the patient with Duchenne muscular dystrophy: ATS consensus statement. Am J Respir Crit Care Med 170(4):456–465

    Article  PubMed  Google Scholar 

  • Fortenberry JD, Del Toro J et al (1995) Management of pediatric acute hypoxemic respiratory insufficiency with bilevel positive pressure (BiPAP) nasal mask ventilation. Chest 108(4):1059–1064

    Article  CAS  PubMed  Google Scholar 

  • Garland JS, Nelson DB et al (1985) Increased risk of gastrointestinal perforations in neonates mechanically ventilated with either face mask or nasal prongs. Pediatrics 76(3):406–410

    CAS  PubMed  Google Scholar 

  • Gherini S, Peters RM et al (1979) Mechanical work on the lungs and work of breathing with positive end-expiratory pressure and continuous positive airway pressure. Chest 76(3):251–256

    Article  CAS  PubMed  Google Scholar 

  • Gregoretti C, Confalonieri M et al (2002) Evaluation of patient skin breakdown and comfort with a new face mask for non-invasive ventilation: a multi-center study. Intensive Care Med 28(3):278–284

    Article  PubMed  Google Scholar 

  • Gregory GA, Kitterman JA et al (1971) Treatment of the idiopathic respiratory-distress syndrome with continuous positive airway pressure. N Engl J Med 284(24):1333–1340

    Article  CAS  PubMed  Google Scholar 

  • Hayes MJ, McGregor FB et al (1995) Continuous nasal positive airway pressure with a mouth leak: effect on nasal mucosal blood flux and nasal geometry. Thorax 50(11):1179–1182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hershenson MB, Colin AA et al (1990) Changes in the contribution of the rib cage to tidal breathing during infancy. Am Rev Respir Dis 141(4 Pt 1):922–925

    Article  CAS  PubMed  Google Scholar 

  • Hollman G, Shen G et al (1998) Helium-oxygen improves Clinical Asthma Scores in children with acute bronchiolitis. Crit Care Med 26(10):1731–1736

    Article  CAS  PubMed  Google Scholar 

  • Jaber S, Chanques G et al (2002) Comparison of the effects of heat and moisture exchangers and heated humidifiers on ventilation and gas exchange during non-invasive ventilation. Intensive Care Med 28(11):1590–1594

    Article  PubMed  Google Scholar 

  • Javouhey E, Barats A et al (2008) Non-invasive ventilation as primary ventilatory support for infants with severe bronchiolitis. Intensive Care Med 34(9):1608–1614

    Article  PubMed  Google Scholar 

  • Joshi G, Tobias JD (2007) A five-year experience with the use of BiPAP in a pediatric intensive care unit population. J Intensive Care Med 22(1):38–43

    Article  PubMed  Google Scholar 

  • Kallet RH, Diaz JV (2009) The physiologic effects of noninvasive ventilation. Respir Care 54(1):102–115

    PubMed  Google Scholar 

  • Kallet RH, Luce JM (2002) Detection of patient-ventilator asynchrony during low tidal volume ventilation, using ventilator waveform graphics. Respir Care 47(2):183–185

    PubMed  Google Scholar 

  • Katz JA, Kraemer RW et al (1985) Inspiratory work and airway pressure with continuous positive airway pressure delivery systems. Chest 88(4):519–526

    Article  CAS  PubMed  Google Scholar 

  • Klausner JF, Lee AY et al (1996) Decreased imposed work with a new nasal continuous positive airway pressure device. Pediatr Pulmonol 22(3):188–194

    Article  CAS  PubMed  Google Scholar 

  • Kristensen K, Dahm T et al (1998) Epidemiology of respiratory syncytial virus infection requiring hospitalization in East Denmark. Pediatr Infect Dis J 17(11):996–1000

    Article  CAS  PubMed  Google Scholar 

  • Kwok H, McCormack J et al (2003) Controlled trial of oronasal versus nasal mask ventilation in the treatment of acute respiratory failure. Crit Care Med 31(2):468–473

    Article  PubMed  Google Scholar 

  • Larrar S, Essouri S et al (2006) Effects of nasal continuous positive airway pressure ventilation in infants with severe acute bronchiolitis. Arch Pediatr 13(11):1397–1403

    Article  CAS  PubMed  Google Scholar 

  • Le Souef PN, England SJ et al (1988) Comparison of diaphragmatic fatigue in newborn and older rabbits. J Appl Physiol 65(3):1040–1044

    PubMed  Google Scholar 

  • Lellouche F, Maggiore SM et al (2002) Effect of the humidification device on the work of breathing during noninvasive ventilation. Intensive Care Med 28(11):1582–1589

    Article  PubMed  Google Scholar 

  • Lellouche F, Maggiore SM et al (2009) Water content of delivered gases during non-invasive ventilation in healthy subjects. Intensive Care Med 35(6):987–995

    Article  PubMed  Google Scholar 

  • Martinon-Torres F, Rodriguez-Nunez A et al (2002) Heliox therapy in infants with acute bronchiolitis. Pediatrics 109(1):68–73

    Google Scholar 

  • Martinon-Torres F, Rodriguez-Nunez A et al (2006) Nasal continuous positive airway pressure with heliox in infants with acute bronchiolitis. Respir Med 100(8):1458–1462

    Google Scholar 

  • Martinon-Torres F, Rodriguez-Nunez A et al (2008) Nasal continuous positive airway pressure with heliox versus air oxygen in infants with acute bronchiolitis: a crossover study. Pediatrics 121(5):e1190–e1195

    Google Scholar 

  • Mayordomo-Colunga J, Medina A et al (2009) Predictive factors of non invasive ventilation failure in critically ill children: a prospective epidemiological study. Intensive Care Med 35(3):527–536

    Article  PubMed  Google Scholar 

  • Moa G, Nilsson K et al (1988) A new device for administration of nasal continuous positive airway pressure in the newborn: an experimental study. Crit Care Med 16(12):1238–1242

    Article  CAS  PubMed  Google Scholar 

  • Nava S, Navalesi P et al (2009) Non-invasive ventilation. Minerva Anestesiol 75(1–2):31–36

    CAS  PubMed  Google Scholar 

  • [No authors listed] (1999) Clinical indications for noninvasive positive pressure ventilation in chronic respiratory failure due to restrictive lung disease, COPD, and nocturnal hypoventilation – a consensus conference report. Chest 116(2):521–534

    Google Scholar 

  • Padman R, Lawless ST et al (1998) Noninvasive ventilation via bilevel positive airway pressure support in pediatric practice. Crit Care Med 26(1):169–173

    Article  CAS  PubMed  Google Scholar 

  • Papastamelos C, Panitch HB et al (1995) Developmental changes in chest wall compliance in infancy and early childhood. J Appl Physiol 78(1):179–184

    CAS  PubMed  Google Scholar 

  • Piastra M, Antonelli M et al (2004) Treatment of acute respiratory failure by helmet-delivered non-invasive pressure support ventilation in children with acute leukemia: a pilot study. Intensive Care Med 30(3):472–476

    Article  PubMed  Google Scholar 

  • Piastra M, De Luca D et al (2009) Noninvasive pressure-support ventilation in immunocompromised children with ARDS: a feasibility study. Intensive Care Med 35(8):1420–1427

    Article  PubMed  Google Scholar 

  • Randerath WJ, Meier J et al (2002) Efficiency of cold Passover and heated humidification under continuous positive airway pressure. Eur Respir J 20(1):183–186

    Article  CAS  PubMed  Google Scholar 

  • Richards GN, Cistulli PA et al (1996) Mouth leak with nasal continuous positive airway pressure increases nasal airway resistance. Am J Respir Crit Care Med 154(1):182–186

    Article  CAS  PubMed  Google Scholar 

  • Robert D, Willig TN et al (1993) Long-term nasal ventilation in neuromuscular disorders: report of a consensus conference. Eur Respir J 6(4):599–606

    CAS  PubMed  Google Scholar 

  • Soong WJ, Hwang B et al (1993) Continuous positive airway pressure by nasal prongs in bronchiolitis. Pediatr Pulmonol 16(3):163–166

    Article  CAS  PubMed  Google Scholar 

  • Sydow M, Golisch W et al (1995) Effect of low-level PEEP on inspiratory work of breathing in intubated patients, both with healthy lungs and with COPD. Intensive Care Med 21(11):887–895

    Article  CAS  PubMed  Google Scholar 

  • Teague WG (2003) Noninvasive ventilation in the pediatric intensive care unit for children with acute respiratory failure. Pediatr Pulmonol 35(6):418–426

    Article  PubMed  Google Scholar 

  • Thia LP, McKenzie SA et al (2008) Randomised controlled trial of nasal continuous positive airways pressure (CPAP) in bronchiolitis. Arch Dis Child 93(1):45–47

    Article  PubMed  Google Scholar 

  • Thill PJ, McGuire JK et al (2004) Noninvasive positive-pressure ventilation in children with lower airway obstruction. Pediatr Crit Care Med 5(4):337–342

    Article  PubMed  Google Scholar 

  • Vargas F, Thille A et al (2009) Helmet with specific settings versus facemask for noninvasive ventilation. Crit Care Med 37(6):1921–1928

    Article  PubMed  Google Scholar 

  • Vignaux L, Tassaux D et al (2007) Performance of noninvasive ventilation modes on ICU ventilators during pressure support: a bench model study. Intensive Care Med 33(8):1444–1451

    Article  PubMed  Google Scholar 

Adjunctive Therapies During CPAP or NIPPV

  • Austan F, Polise M (2002) Management of respiratory failure with noninvasive positive pressure ventilation and heliox adjunct. Heart Lung 31:214–218

    Article  PubMed  Google Scholar 

  • Castello Muñoz A, Carreira Sande N, Bouzón Alejandro M, Pérez Valle S, Rodriguez A, Martinon Sánchez JM, Martinon-Torres F (2007) Usefulness of Heliox in the management of a serious airway obstruction caused by a subglottic hemangioma. An Pediatr (Barc) 67:61–64

    Article  Google Scholar 

  • Chatmongkolchart S, Kacmarek RM, Hess DR (2001) Heliox delivery with noninvasive positive pressure ventilation: a laboratory study. Respir Care 46:248–254

    CAS  PubMed  Google Scholar 

  • Colebourn CL, Barber V, Young JD (2007) Use of helium-oxygen mixture in adult patients presenting with exacerbations of asthma and chronic obstructive pulmonary disease: a systematic review. Anaesthesia 62:34–42

    Article  CAS  PubMed  Google Scholar 

  • Hess DR (2006) Heliox and noninvasive positive-pressure ventilation: a role for heliox in exacerbations of chronic obstructive pulmonary disease? Respir Care 51:640–650

    PubMed  Google Scholar 

  • Hess D, Chatmongkolchart S (2000) Techniques to avoid intubation: noninvasive positive pressure ventilation and heliox therapy. Int Anesthesiol Clin 38:161–187

    Article  CAS  PubMed  Google Scholar 

  • Hilbert G (2003) Noninvasive ventilation with helium-oxygen rather than air-oxygen in acute exacerbations of chronic obstructive disease? Crit Care Med 31:990–991

    Article  PubMed  Google Scholar 

  • Jolliet P, Tassaux D, Thouret JM, Chevrolet JC (1999) Beneficial effects of helium:oxygen versus air:oxygen noninvasive pressure support in patients with decompensated chronic obstructive pulmonary disease. Crit Care Med 27:2422–2429

    Article  CAS  PubMed  Google Scholar 

  • Jolliet P, Tassaux D, Roeseler J, Burdet L, Broccard A, D’Hoore W (2003) Helium-oxygen versus air-oxygen noninvasive pressure support in decompensated chronic obstructive disease: a prospective, multicenter study. Crit Care Med 31:878–884

    Article  CAS  PubMed  Google Scholar 

  • Martinon-Torres F (2003) Ventilation with helium. In: Ruza Tarrio F (ed) Tratado de Cuidados Intensivos Pediatricos. Norma Capitel, Madrid, pp 677–681

    Google Scholar 

  • Martinon-Torres F (2009) Non-invasive ventilation with heliox. In: Medina A, Pons M, Martinon-Torres F (eds) Non-invasive ventilation in pediatrics, 2nd edn. Ergon, Madrid, pp 99–106

    Google Scholar 

  • Martinón-Torres F, Martinón Sánchez JM (2007) Helium: utility and indications. In: Flores C (ed) Urgencias y tratamiento del Niño grave: síntomas guía, técnicas y procedimientos, 2nd edn. Editorial Ergon, Madrid, pp 248–254

    Google Scholar 

  • Martinón-Torres F, Rodríguez Núñez A, Martinón Sánchez JM (1999) Heliox: pediatric perspective of its application. An Pediatr (Barc) 128:42–46

    Google Scholar 

  • Martinon-Torres F, Rodriguez Nunez A, Martinon Sanchez JM (2002a) More about heliox and bronchiolitis. Pediatrics 110:198–199

    Google Scholar 

  • Martinon-Torres F, Rodriguez Nunez A, Martinon Sanchez JM (2002b) Heliox therapy. Pediatrics 110:847–848

    Google Scholar 

  • Martinon-Torres F, Rodriguez Nunez A, Martinon Sanchez JM (2002c) Heliox therapy in infants with acute bronchiolitis. Pediatrics 109:68–73

    Google Scholar 

  • Martinón-Torres F (2012) Noninvasive ventilation with helium-oxygen in children. J Crit Care 27(2):220.e1–9. Epub 2011 Sep 29

    Google Scholar 

  • Martinon-Torres F, Crespo Suarez PA, Silvia Barbara C, Castello Munoz A, Rodriguez Nunez A, Martinon Sanchez JM (2005) Noninvasive ventilation with heliox in an infant with acute respiratory distress syndrome. An Pediatr (Barc) 62:64–67

    Article  CAS  Google Scholar 

  • Martinon-Torres F, Rodriguez-Nunez A, Martinon-Sanchez JM (2006) Nasal continuous positive airway pressure with heliox in infants with acute bronchiolitis. Respir Med 100:1458–1462

    Google Scholar 

  • Martinon-Torres F, Rodriguez-Nunez A, Martinon-Sanchez JM (2008a) Nasal continuous positive airway pressure with heliox versus air-oxygen: a crossover study. Pediatrics 121:1190–1195

    Google Scholar 

  • Martinon-Torres F, Medina Villanueva A, Pons Odena M (2008b) Heliox. In: Esquinas Rodríguez A (ed) Consensos clínicos en ventilacIón mecánica no invasiva. Editorial Aula Médica, Madrid, pp 596–603

    Google Scholar 

  • Martinon-Torres F, Busto Cuiñas MM, Rodriguez Nuñez A, Martinón Sánchez JM (2009) Heliox. In: Lopez J, Calvo C, Baltodano A, Rey C, Rodriguez A, Lorente MJ (eds) Manual de Cuidados Intensivos Pediátricos, 3rd edn. Editorial Publimed, Madrid, pp 703–709

    Google Scholar 

  • Mayordomo-Colunga J, Medina A, Rey C, Concha A, Los Arcos M, Menéndez S (2010) Helmet-delivered continuous positive airway pressure with heliox in respiratory syncytial virus bronchiolitis. Acta Paediatr 99:308–311

    CAS  PubMed  Google Scholar 

  • Piva JP, Barreto SSM, Zelmanovitz F, Amantea S, Cox P (2002) Heliox versus oxygen for nebulized aerosol therapy in children with lower airway obstruction. Pediatr Crit Care Med 3:6–10

    Article  PubMed  Google Scholar 

  • Rodriguez A, Martinon Sanchez JM, Martinon Torres F (2003) Medicinal gases: oxygen and heliox. An Pediatr (Barc) 59:74–81

    Article  Google Scholar 

  • Vivanco-Allende A, Mayordomo-Colunga J, Coca-Pelaz A, Rey C, Medina A (2011) Helmet-delivered heliox-CPAP in severe upper airway obstruction caused by PHACES syndrome. Pediatr Pulmonol 46(3):306–308

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Essouri MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Essouri, S., Martinon-Torres, F. (2015). Noninvasive Respiratory Support in the Paediatric Patient. In: Rimensberger, P. (eds) Pediatric and Neonatal Mechanical Ventilation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01219-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01219-8_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01218-1

  • Online ISBN: 978-3-642-01219-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics