Skip to main content

Monitoring Interactions Between Spontaneous Respiration and Mechanical Inflations

  • Chapter
  • First Online:
Pediatric and Neonatal Mechanical Ventilation

Abstract

Pediatric and neonatal patients breathe spontaneously during mechanical ventilation. This involves the combination of two distinct controllers: the clinician-controlled mechanical pump (the ventilator) and the patient’s own respiratory muscle pump. The interactions between these two controllers can best be described by examining Newton’s equation of motion.

$$ {P}_{\mathrm{T}}={P}_{mus}+{P}_{\mathrm{appl}}=\left(V\times {R}_{rs}\right)+\left(V\times {E}_{rs}\right) $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bonmarchand G, Chevron V, Chopin C, Jusserand D, Girault C, Moritz F, Leroy J, Pasquis P (1996) Increased initial flow rate reduces inspiratory work of breathing during pressure support ventilation in patients with exacerbation of chronic obstructive pulmonary disease. Intensive Care Med 22:1147–1154

    Article  CAS  PubMed  Google Scholar 

  • Branson RD, Campbell RS, Davis K et al (1994) Comparison of pressure and flow triggering systems during continuous positive airway pressure. Chest 106:540–544

    Article  CAS  PubMed  Google Scholar 

  • Carmack J, Torres A, Anders M, Wilson S, Holt S, Heulitt MJ (1995) Comparison of work of breathing in spontaneous breathing young lambs during continuous positive airway pressure and pressure support ventilation with and without flow triggering utilizing the servo 300 ventilator. Respir Care 40:28–34

    Google Scholar 

  • Chatmongkolchart S, Williams P, Hess DR, Kacmarek RM (2001) Evaluation of inspiratory rise time and inspiration termination criteria in new-generation mechanical ventilators: a lung model study. Respir Care 46(7):666–677

    CAS  PubMed  Google Scholar 

  • Georgopoulos D, Roussos C (1996) Control of breathing in mechanically ventilated patients. Eur Respir J 9:2151–2160

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos D, Mitrouska I, Bshouty Z, Webster K, Patakas D, Younes M (1997) Respiratory response to CO2 during pressure-support ventilation in conscious normal humans. Am J Respir Crit Care Med 156(1):146–154

    Google Scholar 

  • Giuliani R, Mascia L, Recchia R et al (1995) Patient-ventilator interaction during synchronized intermittent mandatory ventilation. Effects of flow triggering. Am J Respir Crit Care Med 151:1–9

    Article  CAS  PubMed  Google Scholar 

  • Heulitt MJ, Sanders RC, Holt SJ, Rhodes SM, Thurman TL (2000) Comparison of total work of breathing during CPAP between two neonatal ventilators in a neonatal animal model. Pediatr Crit Care Med 1(2):170–175

    Article  CAS  PubMed  Google Scholar 

  • Heulitt MJ, Holt SJ, Thurman TL, Wilson SW (2003) Effects of continuous positive airway pressure/positive end expiratory pressure and pressure support ventilation on work of breathing utilizing an animal model. Respir Care 48(7):689–696

    PubMed  Google Scholar 

  • Heulitt MJ, Holt SJ, Thurman TL Jo CH (2009) Neurally triggered breaths have reduced response time and work of breathing compared to pneumatically triggered breaths in a recovering lung injury animal model (abstract). Pediatr Res 200E-PAS2008:2125.7

    Google Scholar 

  • Hubmayer RD et al (1990) Crit Care Med 18:102–113

    Google Scholar 

  • Jubran A, Vand de Graaff WB, Tobin MJ (1995) Variability of patient-ventilator interaction with pressure support ventilation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 152:129–136

    Article  CAS  PubMed  Google Scholar 

  • Kondili E, Prinianakis G, Georgopoulos D (2003) Patient-ventilator interactions. Br J Anaesth 91(1):106–119

    Article  CAS  PubMed  Google Scholar 

  • Leung P, Jurban A, Tobin MJ (1997) Comparison of assisted ventilatory modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med 155:1940–1948

    Article  CAS  PubMed  Google Scholar 

  • MacIntyre N, Nishimura M, Usada Y, Tokioka H, Takezawa J, Shimada Y (1990) The Nagoya conference on system design and patient-ventilator interactions during pressure support ventilation. Chest 97:1463–1466

    Article  CAS  PubMed  Google Scholar 

  • MacIntyre NR, McConnell R, Cheng KC, Sane A (1997) Patient-ventilator flow dyssynchrony: flow-limited versus pressure-limited breaths. Crit Care Med 25:1671–1677

    Article  CAS  PubMed  Google Scholar 

  • Mancebo J, Amaro P, Mollo JL, Lorino H, Lemaire F, Brochard L (1995) Comparison of the effects of pressure support ventilation delivered by three different ventilators during weaning from mechanical ventilation. Intensive Care Med 21:913–919

    Article  CAS  PubMed  Google Scholar 

  • Marini JJ, Capps JS, Culver BH (1985) The inspiratory work of breathing during assisted mechanical ventilation. Chest 87(5):612–618

    Article  CAS  PubMed  Google Scholar 

  • Marini JJ, Rodriguez RM, Lamb V (1986) Bedside estimation of the inspiratory work of breathing during mechanical ventilation. Chest 89(1):56–63

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy S, Jubran A, Tobin MJ (1988) Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Crit Care Med 158(5 Pt1):1471–1478

    Google Scholar 

  • Parthasarathy S, Jubran A, Tobin MJ (2000) Assessment of neural inspiratory time in ventilator-supported patients. Am J Respir Crit Care Med 162:546–552

    Article  CAS  PubMed  Google Scholar 

  • Sanders RC, Thurman T, Holt SJ, Taft K, Heulitt MJ (2001) Work of breathing associated with pressure support ventilation in two different ventilators. Pediatr Pulmonol 32:62–70

    Article  PubMed  Google Scholar 

  • Sasson CS, Del Rosarioi N, Fei R et al (1994) Influence of pressure and flow-triggered synchronous intermittent mandatory ventilation on inspiratory muscle work. Crit Care Med 22:1933–1941

    Article  Google Scholar 

  • Shannon DC (1989) Rational monitoring of respiratory 4745 function during mechanical ventilation of infants and children. Intensive Care Med 15(Suppl 1):S13–S16

    Google Scholar 

  • Sinderby CA, Beck JC, Lindstrom LH et al (1997) Enhancement of signal quality in esophageal recordings of diaphragm EMG. J Appl Physiol 82:1370–1377

    CAS  PubMed  Google Scholar 

  • Skatrud JB, Berssenbrugge AD (1983) Effect of sleep state and chemical stimuli on breathing. Prog Clin Biol Res 136:87–95

    CAS  PubMed  Google Scholar 

  • Tokioka H, Tanaka T, Ishizu T, Fukushima T, Iwaki T, Nakmura Y, Kosogabe Y (2001) The effect of breath termination criterion on breathing patterns and the work of breathing during pressure support ventilation. Anesth Analg 92:161–165

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Du HL (2000) Analysis of the mechanisms of expiratory asynchrony in pressure support ventilation: a mathematical approach. J Appl Physiol 88:2143–2150

    CAS  PubMed  Google Scholar 

  • Younes M, Riddle W, Polacheck J (1981) A model for the relation between respiratory neural and mechanical outputs. III. Validation. J Appl Physiol Respir Environ Exerc Physiol 51(4):990–1001

    CAS  PubMed  Google Scholar 

  • Younes M (1989) The physiologic basis of central apnoea. Curr Pulmonol 10:265–326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Heulitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heulitt, M., Donn, S.M. (2015). Monitoring Interactions Between Spontaneous Respiration and Mechanical Inflations. In: Rimensberger, P. (eds) Pediatric and Neonatal Mechanical Ventilation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01219-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01219-8_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01218-1

  • Online ISBN: 978-3-642-01219-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics