Skip to main content

Using the Torso to Compensate for Non-Minimum Phase Behaviour in ZMP Bipedal Walking

  • Chapter
Advances in Robotics Research

Abstract

In Zero Moment Point (ZMP) bipedal walking, the conventional method is to use the cart-table model for generating the reference trajectory [1]. However, due to modeling and tracking errors and external disturbances, such as uneven terrain, the generated trajectorymust be adapted by a stabilizer that uses sensory inputs from force and torque sensors placed in the robot’s feet. The problem with the carttable model is that it is non-minimum phase which causes a significant, undesirable undershoot in the ZMP in order to cancel the effect of disturbances. In this paper, a novel scheme is proposed for ZMP feedback stabilization that utilizes the upper body to balance the humanoid robot. This method increases the performance and robustness of walking by reducing the undershoot and maintaining a desired bandwidth. The effectiveness of the proposed scheme is demonstrated using simulation and open problems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: ICRA, vol. 2, pp. 1620–1626 (2003)

    Google Scholar 

  2. Kanehira, N., Kawasaki, T., Ohta, S., Ismumi, T., Kawada, T., Kanehiro, F., Kajita, S., Kaneko, K.: Design and experiments of advanced leg module (HRP-2L) for humanoid robot (HRP-2) development. In: IROS, vol. 3, pp. 2455–2460 (2002)

    Google Scholar 

  3. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura, K.: The intelligent ASIMO: system overview and integration. In: IEEE/RSJ IROS, vol. 3, pp. 2478–2483 (2002)

    Google Scholar 

  4. Vanderborght, B., Van Ham, R., Verrelst, B., Van Damme, M., Lefeber, D.: Overview of the Lucy-project: Dynamic stabilisation of a biped powered by pneumatic artificial muscles. Advanced Robotics 22(6-7) (10), 1027–1051 (25) (2008)

    Article  Google Scholar 

  5. Pfeiffer, F., Lffler, K., Gienger, M.: The Concept of Jogging JOHNNIE. In: ICRA, vol. 3, pp. 3129–3135 (2002)

    Google Scholar 

  6. Holm, J.K., Spong, M.W.: Kinetic energy shaping for gait regulation of underactuated bipeds. In: Proceedings of the 17th IEEE International Conference on Control Applications, pp. 1232–1238 (2008)

    Google Scholar 

  7. Ames, A.D., Gregg, R.D., Spong, M.W.: A Geometric Approach to Three-Dimensional Hipped Bipedal Robotic Walking. In: 46th IEEE Conference on Decision and Control (2007)

    Google Scholar 

  8. Chevallereau, C., Abba, G., Aoustin, Y., Plestan, F., Westervelt, E., Canudas-de-Wit, C., Grizzle, J.W.: RABBIT: A testbed for advanced control theory. IEEE Control Systems Magazine 23(5), 57–79 (2003)

    Article  Google Scholar 

  9. Vukobratovic, M., Juricic, D.: Contribution to the synthesis of biped gait. IEEE Trans. Biomed. Eng. BME-16(1), 1–6 (1969)

    Article  Google Scholar 

  10. Sobotka, M., Wolff, J., Buss, M.: Invariance Controlled Balance of Legged Robots. In: European Control Conference (2007)

    Google Scholar 

  11. Kajita, S., Tani, K.: Study of Dynamic Biped Locomotion on Rugged Terrain- theory and basic experiment. In: ICAR, Robots in Unstructured Environments, vol. 1, pp. 741–746 (1991)

    Google Scholar 

  12. Hirukawa, H., Kanehiro, F., Kajita, S., Fujiwara, K., Yokoi, K., Kaneko, K., Harada, K.: Experimental evaluation of the dynamic simulation of biped walking of humanoid robots. In: ICRA, vol. 2, pp. 1640–1645 (2003)

    Google Scholar 

  13. Pfeiffer, F., Lffler, K., Gienger, M.: Humanoid robots. In: CLAWAR, pp. 505–516 (2003)

    Google Scholar 

  14. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. IEEE/RSJ IROS 1, 239–246 (2001)

    Google Scholar 

  15. Nise, N.S.: Control systems engineering, 4th edn. John Wiley and Sons, USA (2004)

    Google Scholar 

  16. Slotine, J.J.E., Li, W.: Applied nonlinear control. Printice-Hall international editions, London (1991)

    MATH  Google Scholar 

  17. Napoleon, N.S., Sampei, M.: Balance control analysis of humanoid robot based on ZMP feedback control. IEEE/RSJ IROS 3, 2437–2442 (2002)

    Article  Google Scholar 

  18. Okumura, Y., Tawara, T., Endo, K., Furuta, T., Shimizu, M.: Realtime ZMP compensation for biped walking robot using adaptive inertia force control. In: IROS, vol. 1, pp. 335–339 (2003)

    Google Scholar 

  19. Katayama, T., Ohki, T., Inoue, T., Kato, T.: Design of an optimal controller for a discrete-time system subject to previewable demand. Int. J. of Control 41(3), 677–699 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dallali, H., Brown, M., Vanderborght, B. (2009). Using the Torso to Compensate for Non-Minimum Phase Behaviour in ZMP Bipedal Walking. In: Kröger, T., Wahl, F.M. (eds) Advances in Robotics Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01213-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01213-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01212-9

  • Online ISBN: 978-3-642-01213-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics