Skip to main content

3D Collision Detection for Industrial Robots and Unknown Obstacles Using Multiple Depth Images

  • Chapter
Advances in Robotics Research

Abstract

In current industrial applications without sensor surveillance, the robot workcell needs to be rather static. If the environment of the robot changes in an unplanned manner, e. g. a human enters the workcell and crosses the trajectory, a collision could result. Current research aims at relaxing the separation of robot and human workspaces. We present the first approach that uses multiple 3D depth images for fast collision detection of multiple unknown objects. The depth sensors are placed around the workcell to observe a common surveilled 3D space. The acquired depth images are used to calculate a conservative approximation of all detected obstacles within the surveilled space. Using a robot model and a segment of its future trajectory, these configurations can be checked for collisions with all detected obstacles. If no collision is detected, the minimum distance to any obstacle may be used to limit the maximum velocity. The approach is applicable to a variety of other applications, such as surveillance of tool engines or museum displays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.T.: The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software 22(4), 469–483 (1996), http://www.qhull.org

    Article  MATH  MathSciNet  Google Scholar 

  2. Cameron, S.: Enhancing GJK: Computing Minimum and Penetration Distances between Convex Polyhedra. In: IEEE International Conference on Robotics and Automation (April 1997)

    Google Scholar 

  3. Ebert, D.: Bildbasierte Erzeugung kollisionsfreier Transferbewegungen für Industrieroboter. Schriftenreihe Informatik, Band 12 (2003) ISBN 3-936890-23-4

    Google Scholar 

  4. Gecks, T., Henrich, D.: Multi-Camera Collision Detection allowing for Object Occlusions. In: 37th International Symposium on Robotics (ISR 2006) / 4th German Conference on Robotics (ROBOTIK 2006) (2006)

    Google Scholar 

  5. Gecks, T., Henrich, D.: Path Planning and Execution in Fast-Changing Environments with Known and Unknown Objects. In: IEEE International Conference on Intelligent Robots and Systems (2007)

    Google Scholar 

  6. Henrich, D., Gecks, T.: Multi-camera collision detection between known and unknown objects. In: IEEE International Conference on Distributed Smart Cameras (2008)

    Google Scholar 

  7. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man and Cybernetics 34(3), 334–352 (2004)

    Article  Google Scholar 

  8. Ingensand, H., Kahlmann, T.: Systematic investigation of properties of PMD-sensors, 1st Range Imaging Research Day (2005)

    Google Scholar 

  9. Kuhn, S., Henrich, D.: Modelling intuitive Behaviour for Safe Human/Robot Coexistence and Cooperation. In: IEEE International Conference on Robotics and Automation (2006)

    Google Scholar 

  10. Kuhn, S., Henrich, D.: Fast Vision-Based Minimum Distance Determination Between Known and Unknown Objects. In: IEEE International Conference on Intelligent Robots and Systems (2007)

    Google Scholar 

  11. Kraft, H., et al.: 3D-Camera of High 3D-Frame Rate, Depth Resolution and Background Light Elimination Based on Improved PMD (Photonic Mixer Device)-Technologies, OPTO 2004, AMA Fachverband, http://www.pmdtec.com/

  12. Li, M., Schirmacher, H., Magnor, M., Seidel, H.-P.: Combining Stereo and Visual Hull Information for On-Line Reconstruction and Rendering of Dynamic Scenes. In: IEEE Workshop on MMSP, pp. 9–12 (2002)

    Google Scholar 

  13. Matusik, W., Buehler, C., McMillan, L.: Polyhedral Visual Hulls for Real-Time Rendering. In: Proceedings of the 12th Eurographics Workshop on Rendering, pp. 116–126 (2001)

    Google Scholar 

  14. Meisel, A.: 3D-Bildverarbeitung für feste und bewegte Kameras., Vieweg Verlag, Reihe Fortschritte der Robotik Nr. 21 (1994)

    Google Scholar 

  15. Patent DE 10 2006 057 605 A1 Verfahren und Vorrichtung zum Überwachen eines dreidimensionalen Raumbereichs, Pilz GmbH & Co. KG (2006), http://www.safetyeye.com/

  16. Reed, M.K., Allen, P.K.: 3-D Modeling from Range Imagery: An Incremental Method with a Planning Component. Image and Vision Computing 17(2), 99–111 (1999)

    Article  Google Scholar 

  17. Som, F.: Sichere Steuerungstechnik für den OTS-Einsatz von Robotern. In: 4.Workshop für OTS-Systeme in der Robotik, IPA 2005 (2005)

    Google Scholar 

  18. Thiemermann, S.: team@work - Mensch/Roboter-Kooperation in der Montage. In: 2.Workshop für OTS-Systeme in der Robotik, IPA 2003 (2003)

    Google Scholar 

  19. Thiemermann, S.: Direkte Mensch-Roboter-Kooperation in der Kleinteilmontage mit einem SCARA-Roboter. IPA-IAO-Bericht (2005) ISBN 978-3-936947-50-2

    Google Scholar 

  20. Tsai, R.Y.: An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision. In: IEEE Conference on Computer Vision and Pattern Recognition (1986)

    Google Scholar 

  21. Winkler, B.: Safe Space Sharing Human-Robot Cooperation Using a 3D Time-of-Flight Camera. In: International Robots and Vision Show (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, M., Henrich, D. (2009). 3D Collision Detection for Industrial Robots and Unknown Obstacles Using Multiple Depth Images. In: Kröger, T., Wahl, F.M. (eds) Advances in Robotics Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01213-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01213-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01212-9

  • Online ISBN: 978-3-642-01213-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics