Skip to main content

Cocycle Categories

  • Chapter
  • First Online:
Algebraic Topology

Part of the book series: Abel Symposia ((ABEL,volume 4))

Abstract

The cocycle category H(X; Y) is defined for objects X and Y in a model category, and it is shown that the set of homotopy category morphisms [X, Y] is isomorphic to the set of path components of H(X; Y ), provided that the ambient model category s is right proper, and if weak equivalences are closed under finite products. Various applications of this result are displayed, including the homotopy classification of torsors, abelian sheaf cohomology groups, group extensions and gerbes. The older classification results have simple new proofs involving canonically defined cocycles. Cocycle methods are also used to show that the algebraic K-theory presheaf of spaces is a simplicial stack associated to a suitably defined parabolic groupoid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Borceux, Handbook of Categorical Algebra I: Basic Category Theory, Encyclopedia of Mathematics and its Applications, vol. 50, Cambridge University Press, Cambridge (1994).

    Google Scholar 

  2. A.K. Bousfield and D.M. Kan, Homotopy limits completions and localizations, Springer Lecture Notes in Mathematics vol. 304 (2nd corrected printing), Springer, Berlin–Heidelberg–New York (1987).

    Google Scholar 

  3. K.S. Brown, Abstract homotopy theory and generalized sheaf cohomology, Trans. AMS 186 (1973), 419–458.

    Article  Google Scholar 

  4. P.G. Goerss and J.F. Jardine, Simplicial Homotopy Theory, Progress in Mathematics, vol. 174, Birkhäuser, Basel (1999).

    MATH  Google Scholar 

  5. S. Hollander, A homotopy theory for stacks, Preprint (2001).

    Google Scholar 

  6. J.F. Jardine, Simplicial objects in a Grothendieck topos, Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory I, Contemporary Math. 55 (1986), 193–239.

    MathSciNet  Google Scholar 

  7. J.F. Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987), 35–87.

    Article  MATH  MathSciNet  Google Scholar 

  8. J.F. Jardine, Universal Hasse–Witt classes, “Algebraic K-theory and Algebraic Number Theory”, Contemp. Math. 83 (1989) 83–100.

    MathSciNet  Google Scholar 

  9. J.F. Jardine, Supercoherence, J. Pure Appl. Algebra 75 (1991), 103–194.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.F. Jardine, Stacks and the homotopy theory of simplicial sheaves, Homology Homotopy Appl. 3(2) (2001), 361–384.

    MATH  MathSciNet  Google Scholar 

  11. J.F. Jardine, Intermediate model structures for simplicial presheaves, Canad. Math. Bull. 49(3) (2006), 407–413.

    MATH  MathSciNet  Google Scholar 

  12. J.F. Jardine, Fibred sites and stack cohomology, Math. Z. 254 (2006), 811–836.

    Article  MATH  MathSciNet  Google Scholar 

  13. J.F. Jardine, Diagrams and torsors, K-Theory 37(3) (2006), 291–309.

    Article  MATH  MathSciNet  Google Scholar 

  14. J.F. Jardine, Torsors and stacks, Mediterr. J. Math. 3 (2006), 251–258.

    Article  MATH  MathSciNet  Google Scholar 

  15. J.F. Jardine, The homotopy classification of gerbes, Preprint (2006).

    Google Scholar 

  16. J.F. Jardine and Z. Luo, Higher principal bundles, Math. Proc. Camb. Phil. Soc. 140 (2006), 221–243.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Joyal, Letter to A. Grothendieck (1984).

    Google Scholar 

  18. A. Joyal and M. Tierney, Strong stacks and classifying spaces, Category Theory (Como, 1990), Springer Lecture Notes in Mathematics, vol. 1488. Springer, Berlin (1991), 213–236.

    Google Scholar 

  19. Z. Luo, Closed model categories for presheaves of simplicial groupoids and presheaves of 2-groupoids, Preprint (2003).

    Google Scholar 

  20. S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic: A First Introduction to Topos Theory, Springer, Berlin–Heidelberg–New York (1992).

    MATH  Google Scholar 

  21. F. Morel and V. Voevodsky, \(\mathbb{A}^1\) homotopy theory of schemes, Publ. Math. IHES 90 (1999), 45–143.

    MATH  MathSciNet  Google Scholar 

  22. V.V. Schechtman, On the delooping of Chern characters and Adams operations, Springer Lecture Notes in Mathematics, vol. 1289, Springer, Berlin (1987), 265–319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Jardine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jardine, J.F. (2009). Cocycle Categories. In: Baas, N., Friedlander, E., Jahren, B., Østvær, P. (eds) Algebraic Topology. Abel Symposia, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01200-6_8

Download citation

Publish with us

Policies and ethics