On the Efficiency of Local Search Methods for the Molecular Docking Problem

  • Jorge Tavares
  • Salma Mesmoudi
  • El-Ghazali Talbi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5483)


Evolutionary approaches to molecular docking typically hybridize with local search methods, more specifically, the Solis-Wet method. However, some studies indicated that local search methods might not be very helpful in the context of molecular docking. An evolutionary algorithm with proper genetic operators can perform equally well or even outperform hybrid evolutionary approaches. We show that this is dependent on the type of local search method. We also propose an evolutionary algorithm which uses the L-BFGS method as local search. Results demonstrate that this hybrid evolutionary outperforms previous approaches and is better suited to serve as a basis for evolutionary docking methods.


Local Search Evolutionary Algorithm Protein Data Bank Molecular Docking Genetic Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Neumaier, A.: Molecular modeling of proteins and mathematical prediction of protein structure. SIAM Review 39, 407–460 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Thomsen, R.: Protein-ligand docking with evolutionary algorithms. In: Fogel, G.B., Corne, D.W., Pan, Y. (eds.) Computational Intelligence in Bioinformatics, pp. 169–195. Wiley-IEEE Press (2008)Google Scholar
  3. 3.
    Thomsen, R.: Flexible ligand docking using evolutionary algorithms: investigating the effects of variation operators and local search hybrids. Biosystems 72, 57–73 (2003)CrossRefGoogle Scholar
  4. 4.
    Tavares, J., Tantar, A.A., Melab, N., Talbi, E.G.: The influence of mutation on protein-ligand docking optimization: a locality analysis. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Tavares, J., Melab, N., Talbi, E.G.: An empirical study on the influence of genetic operators for molecular docking optimization. Technical Report RR-6660, INRIA Lille - Nord Europe research Centre (2008)Google Scholar
  6. 6.
    Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a lamarckian genetic algorithm and and empirical binding free energy function. Journal of Computational Chemistry 19, 1639–1662 (1998)CrossRefGoogle Scholar
  7. 7.
    Dixon, J.S.: Flexible docking of ligands to receptor sites using genetic algorithms. In: Proc. of the 9th European Symposium on Structure-Activity Relationships, Leiden, The Netherlands, pp. 412–413. ESCOM Science Publishers (1993)Google Scholar
  8. 8.
    Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., Corbeil, C.: Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. British Journal of Pharmacology 153, 1–20 (2007)Google Scholar
  9. 9.
    Liu, D.C., Nocedal, J.: On the limited memory method for large scale optimization. Mathematical Programming B, 503–528 (1989)Google Scholar
  10. 10.
    Tavares, J., Tantar, A.A., Melab, N., Talbi, E.G.: The impact of local search on protein-ligand docking optimization. In: Proceedings of the 8th International Conference on Hybrid Intelligent Systems (2008)Google Scholar
  11. 11.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer Journal 7, 308–313 (1965)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jorge Tavares
    • 1
  • Salma Mesmoudi
    • 2
  • El-Ghazali Talbi
    • 2
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.INRIA Lille - Nord Europe Research CentreVilleneuve d’AscqFrance

Personalised recommendations