Skip to main content

Mining Evolving Learning Algorithms

  • Conference paper
Genetic Programming (EuroGP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5481))

Included in the following conference series:

  • 783 Accesses


This paper presents an empirical method to identify salient patterns in tree based Genetic Programming. By using an algorithm derived from tree mining techniques and measuring the destructiveness of replacing patterns, we are able to identify those patterns that are responsible for the increased fitness of good individuals. The method is demonstraded on the evolution of learning rules for binary perceptrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Langdon, W., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  2. Rattray, M., Saad, D.: Globally optimal on-line learning rules for multi-layer neural networks. Journal of Physics A: Mathematical and General 30(22), L771–L776 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chalmers, D.J.: The evolution of learning: An experiment in genetic connectionism. In: Touretsky, D.S., Elman, J.L., Sejnowski, T.J., Hinton, G.E. (eds.) Proceedings of the 1990 Connectionist Summer School, pp. 81–90. Morgan Kaufmann, San Francisco (1990)

    Google Scholar 

  4. Baxter, J.: The evolution of learning algorithms for artificial neural networks. Complex Systems, 313–326 (1992)

    Google Scholar 

  5. Bengio, S., Bengio, Y., Cloutier, J.: Use of genetic programming for the search of a new learning rule for neutral networks. In: Proceedings of the 1994 IEEE World Congress on Computational Intelligence, Orlando, Florida, USA, vol. 1, pp. 324–327. IEEE Press, Los Alamitos (1994)

    Google Scholar 

  6. Radi, A., Poli, R.: Genetic programming can discover fast and general learning rules for neural networks. In: Genetic Programming 1998: Proceedings of the Third Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, pp. 314–323. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  7. Radi, A., Poli, R.: Discovery of backpropagation learning rules using genetic programming. In: Proceedings of the 1998 IEEE World Congress on Computational Intelligence, Anchorage, vol. 1, pp. 371–375. IEEE Press, Los Alamitos (1998)

    Google Scholar 

  8. Radi, A., Poli, R.: Discovering efficient learning rules for feedforward neural networks using genetic programming. Technical Report CSM-360, Department of Computer Science, University of Essex, Colchester, UK (January 2002)

    Google Scholar 

  9. Neirotti, J.P., Caticha, N.: Dynamics of the evolution of learning algorithms by selection. Physical Review E 67, 041912 (2003)

    Article  MathSciNet  Google Scholar 

  10. Tackett, W.A.: Mining the genetic program. IEEE Expert 10(3), 28–38 (1995)

    Article  Google Scholar 

  11. Smart, W., Andreae, P., Zhang, M.: Empirical analysis of GP tree-fragments. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 55–67. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Smart, W., Zhang, M.: Empirical analysis of schemata in genetic programming using maximal schemata and MSG. In: 2008 IEEE World Congress on Computational Intelligence, Hong Kong. IEEE Computational Intelligence Society, IEEE Press, Los Alamitos (2008)

    Google Scholar 

  13. McKay, R., Shin, J., Hoang, T.H., Nguyen, X.H., Mori, N.: Using compression to understand the distribution of building blocks in genetic programming populations. IEEE Congress on Evolutionary Computation, 2501–2508 (2007)

    Google Scholar 

  14. Nowostawski, M., Poli, R.: Parallel genetic algorithm taxonomy. In: Nowostawski, M., Poli, R. (eds.) Third International Conference on Knowledge-Based Intelligent Information Engineering Systems, December 1999, pp. 88–92 (1999)

    Google Scholar 

  15. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms (Genetic Algorithms and Evolutionary Computation 1), 1st edn. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  16. Poli, R., Langdon, W.B.: A new schema theory for genetic programming with one-point crossover and point mutation. In: Genetic Programming 1997: Proceedings of the Second Annual Conference, pp. 278–285. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  17. Mori, N., McKay, R., Nguyen, X.H., Essam, D.: Equivalent decision simplification: A new method for simplifying algebraic expressions in genetic programming. In: Proceedings of 11th Asia-Pacific Workshop on Intelligent and Evolutionary Systems (2007)

    Google Scholar 

  18. Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Frequent subtree mining - an overview. Fundamenta Informaticae 66(1-2), 161–198 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joó, A. (2009). Mining Evolving Learning Algorithms. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds) Genetic Programming. EuroGP 2009. Lecture Notes in Computer Science, vol 5481. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01180-1

  • Online ISBN: 978-3-642-01181-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics