Semantic Aware Crossover for Genetic Programming: The Case for Real-Valued Function Regression

  • Quang Uy Nguyen
  • Xuan Hoai Nguyen
  • Michael O’Neill
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5481)


In this paper, we apply the ideas from [2] to investigate the effect of some semantic based guidance to the crossover operator of GP. We conduct a series of experiments on a family of real-valued symbolic regression problems, examining four different semantic aware crossover operators. One operator considers the semantics of the exchanged subtrees, while the other compares the semantics of the child trees to their parents. Two control operators are adopted which reverse the logic of the semantic equivalence test. The results show that on the family of test problems examined, the (approximate) semantic aware crossover operators can provide performance advantages over the standard subtree crossover adopted in Genetic Programming.


crossover semantic genetic programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banzhaf, W., Nordin, P., Francone, F.D., Keller, R.E.: Genetic Programming: An Introduction - On the Automatic Evolution of Computer Programs and Its Applications. Morgan Kaufmann Publishers, San Francisco (1998)CrossRefzbMATHGoogle Scholar
  2. 2.
    Beadle, L., Johnson, C.G.: Semantically Driven Crossover in Genetic Programming. In: Proceedings of the IEEE World Congress on Computational Intelligence, pp. 111–116. IEEE Press, Los Alamitos (2008)Google Scholar
  3. 3.
    Johnson, C.G.: Deriving Genetic Programming Fitness Properties by Static Analysis. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 299–308. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Johnson, C.G.: Genetic Programming with Guaranteed Constraints. In: Lofti, A., John, B., Garibaldi, J. (eds.) Recent Advances in Soft Computing. Physica/Springer-Verlag, Heidelberg (2002)Google Scholar
  5. 5.
    Johnson, C.G.: Genetic Programming with Fitness based on Model Checking. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Johnson, C.G.: What Can Automatic Programming Learn from Theoretical Computer Science? In: Yao, X. (ed.) Proceedings of the UK Workshop on Computational Intelligence, University of Birmingham (2002)Google Scholar
  7. 7.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  8. 8.
    Mahfoud, S.W.: Crowding Preselection Revisited. In: Manner, R., Manderick, B. (eds.) Parallel Problem Solving from Nature, vol. 2, pp. 27–36. Elsevier, Amsterdam (1992)Google Scholar
  9. 9.
    Mahfoud, S.W.: Niching Methods for Genetic Algorithms. Doctoral Dissertation at University of Illinois at Urbana-Champaign (1995)Google Scholar
  10. 10.
    McPhee, N.F., Ohs, B., Hutchison, T.: Semantic Building Blocks in Genetic Programming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Mori, N., McKay, R.I., Nguyen, X.H., Essam, D.: Equivalent Decision Simplification: A New Method for Simplifying Algebraic Expressions in Genetic Programming. In: Proceedings of 11th Asia-Pacific Workshop on Intelligent and Evolutionary Systems (2007)Google Scholar
  12. 12.
    Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming (2008),
  13. 13.
    Nguyen, X.H., McKay, R.I., Essam, D.: Solving the Symbolic Regression Problem with Tree-Adjunct Grammar Guided Genetic Programming: The Comparative Results. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), pp. 1326–1331. IEEE Press, Los Alamitos (2002)Google Scholar
  14. 14.
    Krysztof, K., PremysBaw, P.: Potential Fitness for Genetic Programming. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 2008), Late-Breaking Papers, pp. 2175–2180. ACM, New York (2008)Google Scholar
  15. 15.
    Langdon, W.B., Poli, R.: Fitness causes bloat: Mutation. In: Koza, J. (ed.) Late Breaking Papers at the GP 1997 Conference, Stanford, CA, USA, July 13-16, pp. 132–140. Stanford Bookstore (1997)Google Scholar
  16. 16.
    Langdon, W.B., Soule, T., Poli, R., Foster, J.A.: The evolution of size and shape. In: Spector, L., Langdon, W.B., O’Reilly, U.-M., Angeline, P.J. (eds.) Advances in Genetic Programming 3, ch. 8, pp. 163–190. MIT Press, Cambridge (1999)Google Scholar
  17. 17.
    Dignum, S., Poli, R.: Crossover, Sampling, Bloat and the Harmful Effects of Size Limits. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 158–169. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Dignum, S., Poli, R.: Operator Equalisation and Bloat Free GP. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 110–121. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Banzhaf, W., Langdon, W.B.: Some considerations on the reason for bloat. In: Genetic Programming and Evolvable Machines, vol. 3, pp. 81–91. Springer, Netherlands (2002)Google Scholar
  20. 20.
    Ghodrat, M.A., Givargis, T., Nicolau, A.: Equivalence Checking of Arithmetic Expressions. In: CASES 2005, San Francisco, California. ACM, New York (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Quang Uy Nguyen
    • 1
  • Xuan Hoai Nguyen
    • 2
  • Michael O’Neill
    • 1
  1. 1.Natural Computing Research & Applications GroupUniversity College DublinIreland
  2. 2.School of Computer Science and EngineeringSeoul National UniversityKorea

Personalised recommendations