Membrane Distillation for Solar Desalination

  • Joachim KoschikowskiEmail author
  • Marcel Wieghaus
  • Matthias Rommel
Part of the Green Energy and Technology book series (GREEN)


Membrane distillation (MD) is a hybrid thermal/membrane desalination process in which pure water vapour from a salt solution passes through a hydrophobic membrane, driven by a difference in temperature, and condenses on the opposite side. This chapter starts with a detailed explanation of the principles behind membrane distillation. The four main types of MD technology are then discussed and the technical advantages and disadvantages of each technology are outlined, focusing on the crucial features for coupling MD with solar thermal energy. Heat and mass transfer phenomena are examined with regard to the influences of temperature polarisation and salt concentration on process performance. Finally, available semi-commercial MD systems are briefly presented with details on solar thermally driven MD systems for the autonomous desalination of brackish and sea water.


Knudsen Diffusion Membrane Distillation Compact System Vapour Pressure Difference Grand Canary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



air gap membrane distillation


direct current


direct contact membrane distillation


membrane distillation


multi effect distillation


maximum power point


multi stage flash










sweeping gas membrane distillation


vacuum membrane distillation


  1. 1.
    U. Ditscher, Untersuchung des Wassertransports über die Gasphase durch eine poröse Membranmit hydrophober Gerüststruktur unter dem Einfluss einer Temperaturdifferenz, Inaugural-Dissertation an der Mathematisch- Naturwissenschaftlichen Fakultät der Universität zu Köln, Köln 1990Google Scholar
  2. 2.
    A.G. Fane, R.W. Schofield, C.J.D. Fell, The efficient use of energy in membrane distillation, Desalination 64, 231–243, Elsevier, Amsterdam 1987CrossRefGoogle Scholar
  3. 3.
    T.K. Sherwood, R.L. Pigford, C.R. Wilke, Mass Transfer, McGraw-Hill, New York 1975Google Scholar
  4. 4.
    R.W. Schofield, A.G. Fane, C.J.D. Fell, Heat and mass transfer in membrane distillation, Journal of Membrane Science 33, 299–313, Elsevier, Amsterdam 1987CrossRefGoogle Scholar
  5. 5.
    C.H. Lee, W.H. Hong, Effect of operating variables on flux and selectivity in sweeping gas membrane distillation for dilute aqueous isopropanol, Journal of Membrane Science 188, 79–86, Elsevier, Amsterdam 2001CrossRefGoogle Scholar
  6. 6.
    N. Couffin, C. Cabassud, V. Lahoussine-Turcaud, A new process to remove halogenated VOCs for drinking water production: vacuum membrane distillation, Desalination 117, 233–245, Elsevier, Amsterdam 1998CrossRefGoogle Scholar
  7. 7.
    W.L. Gore et al., United States Patent Number 4,545,862 United States Patent and Trademark Office, 1985Google Scholar
  8. 8.
    G. Wiedner, W. Heinzl, Entwicklung, Bau und Erprobung einer solarbetriebenen Meerwasserentsalzungsanlage nach dem MD-Verfahren, Bericht Projektphase I zum BMBF-Projekt FKZ: 0328762A, MGoogle Scholar
  9. 9.
    C. Bier, Bau und Erprobung einer solarbetriebenen Meerwasserentsalzungsanlage nach dem Verfahren der Membrandestillation, Phase II Schlussbericht zum BMBF-Projekt FKZ: 0329085 A, MGoogle Scholar
  10. 10.
    A Solar Desalination System Using the Membrane Distillation Process, Technical Brochure No. 46, CADDET Center for renewable energy, United Kingdom 1996Google Scholar
  11. 11.
    L. Chuanfeng, Polygeneration of electricity, heat and ultra pure water for the semiconductor industry, Master thesis heat and power technology, Department of Energy Technology, Royal Institute of Technology, Stockholm 2004Google Scholar
  12. 12.
    MEDESOL consortium, Critical assessment of the state-of-the-art and bibliographic review on membrane distillation technology, solar collector technology and low-fouling heat transfer modified surfaces, Deliverable 1 of MEDESOL project, Almeria 2007Google Scholar
  13. 13.
    J.H. Hanemaaijer, Salt to fresh water using MEMSTIL membrane distillation, Presented at Euromembrane, Gardini, Naxos 2006Google Scholar
  14. 14.
    G.W. Meindersma, C.M. Guijt, A.B. de Haan, Desalination and water recycling by air gap membrane distillation, Desalination,187, 291–301, Elsevier, Amsterdam 2006CrossRefGoogle Scholar
  15. 15.
    S. Basel, Entwicklung eines kompakten solaren Meerwasserentsalzungssystems, Diplomarbeit FH Augsburg, angefertigt am Fraunhofer ISE, Freiburg, 2005Google Scholar
  16. 16.
    M. Ebermeyer, Aufbau und Vermessung einer solarthermisch angetriebenen Wasserentsalzungsanlage, Diplomarbeit FH Biberach, Fraunhofer ISE, Freiburg, 2005Google Scholar
  17. 17.
    M. Rommel, M. Hermann, J. Koschikowski, Final project report, JOR3-CT98-0229 SODESA, Fraunhofer ISE, Freiburg, 2002Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Joachim Koschikowski
    • 1
    • 2
    Email author
  • Marcel Wieghaus
    • 1
    • 2
  • Matthias Rommel
    • 3
  1. 1.Fraunhofer Institute for Solar Energy Systems ISEFreiburgGermany
  2. 2.PSE AG - Projects in Solar EnergyFreiburgGermany
  3. 3.Institute for Solar Technology SPF University of Applied Sciences Rapperswil HSR Oberseestr. 10RapperswilSwitzerland

Personalised recommendations