Rich Language Analysis for Counterterrorism

  • Mathieu GuidèreEmail author
  • Newton Howard
  • Shlomo Argamon


Accurate and relevant intelligence is critical for effective counterterrorism. Too much irrelevant information is as bad or worse than not enough information. Modern computational tools promise to provide better search and summarization capabilities to help analysts filter and select relevant and key information. However, to do this task effectively, such tools must have access to levels of meaning beyond the literal. Terrorists operating in context-rich cultures like fundamentalist Islam use messages with multiple levels of interpretation, which are easily misunderstood by non-insiders. This chapter discusses several kinds of such “encryption” used by terrorists and insurgents in the Arabic language, and how knowledge of such methods can be used to enhance computational text analysis techniques for use in counterterrorism.


Saudi Arabia Noun Phrase John Benjamin Arabic Language Document Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnbrook, G. 1996. Language and computers. Edinburgh: Edinburgh University Press.Google Scholar
  2. Biber, D., S. Conrad, and R. 1998. Reppen corpus linguistics, investigating language structure and use. Cambridge: Cambridge UP.Google Scholar
  3. Buckwalter T. 2002. Buckwalter Arabic Morphological Analyzer Version 1.0. Linguistic Data Consortium, catalog number LDC2002L49 and ISBN 1-58563-257-0.
  4. Charteris-Black, J. 2004. Corpus approaches to critical metaphor analysis. Basingstoke: Palgrave Macmillan.CrossRefGoogle Scholar
  5. Chilton, P. 1996. Security metaphors: Cold War discourse from containment to common house : Conflict and consciousness; v.2. New York: Peter Lang.Google Scholar
  6. Croft, W., and D. A. Cruse. 2004. Cognitive linguistics: Cambridge textbooks in linguistics. Cambridge: Cambridge University Press.Google Scholar
  7. Cuyckens, H., R. Dirven, and J. R. Taylor (eds.) 2003. Cognitive approaches to lexical semantics. Cognitive linguistics research; 23. Berlin; New York: Mouton de Gruyter.Google Scholar
  8. Dirven, R., and M. Verspoor (eds.) 2004. Cognitive exploration of language and linguistics. Amsterdam: John Benjamins.Google Scholar
  9. Dirven, R., R. Frank, and C. Ilie (eds.) 2001. Language and ideology. Amsterdam; Philadelphia: John Benjamins.Google Scholar
  10. Dirven, R., R. M. Frank, and M. Putz eds. 2003. Cognitive models in language and thought: ideology, metaphors and meanings. Cognitive linguistics research; 24 . Berlin: Mouton de Gruyter.Google Scholar
  11. Fauconnier, G., and M. Turner. 2002. The way we think: conceptual blending and the mind’s hidden complexities. New York: Basic Books.Google Scholar
  12. Fauconnier, G. 1997. Mappings in thought and language. Cambridge, U.K.; New York,: Cambridge University Press.Google Scholar
  13. Goldberg, A. ed. 1996. Conceptual structure, discourse and language. Stanford: CLSI.Google Scholar
  14. Grossman, D., and O. Frieder. 2004. Information retrieval: algorithms and heuristics, 2nd ed. Springer Publishers.Google Scholar
  15. Guidère M. 2006a. Al-Qaeda’s Noms de Guerre: How should we decode terrorists’ names?. Defense Concepts, 1(3):6–16.Google Scholar
  16. Guidère, M. 2006b. The Al-Qaeda “Martyrs”, Paris : Editions du Temps, p. 240.Google Scholar
  17. Hudson, R. 2006. Language networks. The new word grammar. New York: Oxford University Press.Google Scholar
  18. Langacker, R. W. 1987. Foundations of cognitive grammar. Stanford, CA.: Stanford University Press.Google Scholar
  19. Langacker, R. W. 2001. Discourse in cognitive grammar. Cognitive Linguistics 12:143–88CrossRefGoogle Scholar
  20. Lebart, L., A. Salem, and L. Berry. 1997. Exploring textual data. Kluwer Academic Publishers.Google Scholar
  21. Lee, D. 2001. Cognitive linguistics: an introduction. Melbourne; Oxford: Oxford University Press.Google Scholar
  22. Madigan, D., Genkin, A., Lewis, D., Argamon, S., Fradkin, D., and L. Ye. 2005. Author Identification on the large scale. Joint Annual Meeting of the Interface and the Classification Society of North America (CSNA)Google Scholar
  23. Mehler, A. 2007. Large text networks as an object of corpus linguistic studies. In: Corpus linguistics. L|deling, A. and Kytv, M. (eds.). An international handbook of the science of language and society, Berlin/New York: de Gruyter.Google Scholar
  24. Nadeau, D. and S. Sekine. 2007. A survey of named entity recognition and classification. Linguisticae Investigationes, 30(1):3–26.CrossRefGoogle Scholar
  25. Palmer, G. 1996. Toward a theory of cultural linguistics. Austin: University of Texas Press.Google Scholar
  26. Partington, A. 1998. Patterns and meanings: Using corpora for english language research and teaching. Philadephia, PA: John Benjamins.Google Scholar
  27. Semino, E., and J. Culpeper (eds.) 2002. Cognitive stylistics: language and cognition in text analysis . Linguistic approaches to literature; v. 1 . Amsterdam: John Benjamins.Google Scholar
  28. Stefanowitsch, A., and S. Thomas Gries. 2006. Corpora in cognitive linguistics: Corpus-based approaches to syntax and lexis, New York: De Gruyter. Young, S. (ed.). 1997. Corpus-based methods in language and speech processing. Kluver Academic publishersGoogle Scholar
  29. Talmy, L. 2000. Toward a cognitive semantics. Cambridge, MA.; London: MIT Press.Google Scholar
  30. Tomasello, M. 1998. The new psychology of language: Cognitive and functional approaches to language structure. Mahwah, NJ: Laurence Erlbaum.Google Scholar
  31. Ungerer, F., and S., Hans-Jorg. 1996. An Introduction to Cognitive Linguistics. Longman.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mathieu Guidère
    • 1
    Email author
  • Newton Howard
    • 1
  • Shlomo Argamon
    • 2
  1. 1.Descartes Institute Center for Advanced Defense StudiesWashingtonUSA
  2. 2.Department of Computer Science Illinois Institute of TechnologyChicagoUSA

Personalised recommendations