Skip to main content

A Morphogenetic Crop Model for Sugar-Beet (Beta vulgaris L.)

  • Conference paper
Crop Modeling and Decision Support

Abstract

This paper is the instructions for the proceeding of the International Symposium on Crop. Sugar beet crop models have rarely taken into account the morphogenetic process generating plant architecture despite the fact that plant architectural plasticity plays a key role during growth, especially under stress conditions. The objective of this paper is to develop this approach by applying the GreenLab model of plant growth to sugar beet and to study the potential advantages for applicative purposes.

Experiments were conducted with husbandry practices in 2006. The study of sugar beet development, mostly phytomer appearance, organ expansion and leaf senescence, allowed us to define a morphogenetic model of sugar beet growth based on GreenLab. It simulates organogenesis, biomass production and biomass partitioning. The functional parameters controlling source-sink relationships during plant growth were estimated from organ and compartment dry masses, measured at seven different times, for samples of plants. The fitting results are good, which shows that the introduced framework is adapted to analyse source-sink dynamics and shoot-root allocation throughout the season. However, this approach still needs to be fully validated, particularly among seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrieu B, Allirand JM, Jaggard KW (1997) Ground cover and leaf area index of maize and sugar beet crops. Agronomie 17:315–321.

    Article  Google Scholar 

  • Ann Clark E, Loomis RS (1978) Dynamics of leaf growth and development in sugar beets. J. Amer. Soc. sugar beet technologists 20:97–112.

    Google Scholar 

  • Caneill J, Fleury A, Ferre F (1994) L’élaboration du rendement de la betterave sucrière. In: Combe L, Picard D (eds.) Un point sur l’élaboration du rendement des principales cultures annuelles. INRA éditions, Paris

    Google Scholar 

  • Cournède PH, Kang MZ, Mathieu A, Barczi JF, Yan HP, Hu BG, de Reffye P (2006) Structural factorization of plants to compute their functional and architectural growth. Simulation 82:427–438.

    Article  Google Scholar 

  • Cournède PH, Mathieu A, Houllier F, Barthélémy D, de Reffye P (2008) Computing competition for light in the Greenlab model of plant growth: a contribution to the study of the effects of density on resource acquisition and architectural development. Ann. Bot. 101:1207–1219.

    Article  PubMed  Google Scholar 

  • Dale JE, Milthorpe FL (1983) General features of the production and growth of leaves. In: Dale JE, Milthorpe FL (eds.) The Growth and Function of Leaves. Cambridge University Press.

    Google Scholar 

  • Damay N and Le Gouis J (1993) Radiation use efficiency of sugar beet in Northern France. Eur. J. Agron. 2:179–184.

    Google Scholar 

  • de Reffye P, Edelin C, Françon J, Jaeger M, Puech C (1988) Plants models faithful to botanical structure and development. Comput. Graphics 22:151–158.

    Article  Google Scholar 

  • de Reffye P, Hu BG (2003) Relevant qualitative and quantitative choices for building an efficient dynamic plant growth model: GREENLAB case. In: Hu BG and Jaeger M (eds.) Plant Growth Modeling and Applications. Proc. PMA03’ Int. symp. on plant growth modeling, simulation, visualization and their applications, Beijing, China, October 13–16, 2003. Tsinghua University Press and Springer.

    Google Scholar 

  • de Reffye P, Heuvelink E, Barthélémy D, Cournède PH (2008) Modeling plant growth and architecture. In: Jorgensen S (ed.) Encyclopedia of Ecology, Elsevier.

    Google Scholar 

  • de Wit CT et al (1978) Simulation of assimilation, respiration and transpiration of crops. Simulation. Wiley, New York

    Google Scholar 

  • Dong QX, Louarn G, Wang YM, Barczi JF, de Reffye P (2008) Does the structure-function model GREENLAB deal with crop phenotypic plasticity induced by plant spacing? A case study on tomato. Ann. Bot. 101:1207–1219.

    Google Scholar 

  • Gallagher JN, Biscoe PV (1978) Radiation absorption, growth and yield of cereals. J. Agric. Sci. Camb. 91:47–60.

    Article  Google Scholar 

  • Granier C, Tardieu F (1998b) Is thermal time adequate for expressing the effects of temperature on sunflower leaf development?. Plant, Cell and Env. 21:695–703.

    Article  Google Scholar 

  • Guo Y, de Reffye P, Song YH, Zhan ZG, Dingkuhn M, Li BG (2003) Modeling of biomass acquisition and partitioning in the architecture of sunflower. In: Hu BG and Jaeger M (eds.) Plant growth modeling and applications. Proc. PMA03’ Int. symp. on plant growth modeling, simulation, visualization and their applications, Beijing, China, October 13–16, 2003. Tsinghua University Press and Springer.

    Google Scholar 

  • Guo Y, Ma YT, Zhan ZG, Li BG, Dingkuhn M, Luquet D, de Reffye P (2006) Parameter optimization and field validation for the functional-structural model GREENLAB for maize. Ann. Bot. 97:217–230.

    Article  PubMed  Google Scholar 

  • Howell TJ, Musick JT (1985) Relationship of dry matter production of field crops to water consumption. In: Perrier A and Riou C (eds.) Proc. Int. Conf. Les besoins en eau des cultures. Paris, France, INRA editions.

    Google Scholar 

  • Jaggard K W, Qi A (2006) Crop physiology and agronomy. In: Draycott AP (ed) Sugar Beet. Blackwell Publishing, Oxford.

    Google Scholar 

  • Ma YT, Li BG, Zhan ZG, Guo Y, Luquet D, de Reffye P, Dingkuhn M (2007) Parameter stability of the functional-structural plant model GREENLAB as affected by variation within populations, among seasons and among growth stages. Ann. Bot. 99:61–73.

    Article  PubMed  Google Scholar 

  • Ma YT, Wen MP, Guo Y, Li BG, Cournède PH, de Reffye P (2008) Parameter optimization and field validation of the functional-structural model GREENLAB for maize at different population densities. Ann. Bot. 101:1185–1194.

    Article  PubMed  Google Scholar 

  • Malnou CS, Jaggard KW, Sparkes DL (2008) Nitrogen fertilizer and the efficiency of sugar beet crop in late summer. Eur. J. Agron. 28:47–56.

    Article  CAS  Google Scholar 

  • Marcelis LFM, Heuvelink E, Goudriaan L (1998) Modeling biomass production and yield of horticultural crops: a review. Sci. Hort. 74:83–111.

    Article  Google Scholar 

  • Mathieu A, Zhang B, Heuvelink E, Liu S, Cournède PH, de Reffye P (2008) Calibration of fruit cyclic patterns in cucumber plants as a function of source-sink ratio with the GreenLab model. In: Hanan J and Prusinkiewicz P (eds.) Proc. of the 5th international workshop on FSPM.

    Google Scholar 

  • Milford GFJ, Pocock TO, Riley J (1985a) An analysis of leaf growth in sugar-beet. I. Leaf appearance and expansion in relation to temperature under controlled conditions. Ann. Appl. Biol. 106:163–172.

    Article  Google Scholar 

  • Milford GFJ, Pocock TO, Riley J (1985b) An analysis of leaf growth in sugar beet. II. Leaf appearance in field crops. Ann. Appl. Biol. 106:173–185.

    Article  Google Scholar 

  • Monteith JL (1977) Climate and the efficiency of crop production in Britain. Proc. of the Royal Society of London. B. 281:277–294.

    Article  Google Scholar 

  • Qi A, Kenter C, Hoffmann C, Jaggard KW (2005) The Broom’s Barn sugar beet growth model and its adaptation to soils with varied available water content. Eur. J. Agron. 23:108–122.

    Article  Google Scholar 

  • Reveilles JP (1991) Géométrie discrète, calcul en nombres entiers et algorithmique. PhD thesis, Univ. of Strasbourg.

    Google Scholar 

  • Sievänen R, Nikinmaa E, Nygren P, Ozier-Lafontaine H, Perttunen L, Hakula H (2000) Components of functional-structural tree models. Ann. Forest. Sci. 57:399–412.

    Article  Google Scholar 

  • Spitters CJT, van Keulen H, van Kraalingen DWG (1989) A simple and universal crop growth simulator: SUCROS87. In: Rabbinge R et al. (eds.) Simulation and Systems Management in Crop Protection. Simulation Monographs 32. Wageningen, Pudoc.

    Google Scholar 

  • Stehlik V (1938) La feuille de betterave sucrière. In: Communication au VIIIème congrès de.l’IIRB, janvier 1938.

    Google Scholar 

  • Varlet-Grancher C, Gosse G, Chartier M, Sinoquet H, Bonhomme R, Allirand JM (1989) Mise au point: rayonnement solaire absorbé ou intercepté par un couvert végétal. Agronomie. 9:419–439.

    Article  Google Scholar 

  • Werker AR, Jaggard KW, Allison MF (1998) Dependence of sugar beet yield on light interception and evapotranspiration. Agric. Forest Met. 89:229–240.

    Article  Google Scholar 

  • Werker AR, Jaggard KW, Allison MF (1999) Modeling partitioning between structure and storage in sugar beet: Effects of drought and soil nitrogen. Plant Soil 207:97–106.

    Article  Google Scholar 

  • Yan HP, Kang MZ, de Reffye P, Dingkuhn M (2004) A dynamic, architectural plant model simulating resource-dependent growth. Ann. Bot. 93:591–602.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lemaire, S., Maupas, F., Cournède, P.H., de Reffye, P. (2009). A Morphogenetic Crop Model for Sugar-Beet (Beta vulgaris L.). In: Cao, W., White, J.W., Wang, E. (eds) Crop Modeling and Decision Support. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01132-0_14

Download citation

Publish with us

Policies and ethics