Enlarging the Terminal Region of NMPC with Parameter-Dependent Terminal Control Law

  • Shuyou Yu
  • Hong Chen
  • Christoph Böhm
  • Frank Allgöwer
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 384)


Nominal stability of a quasi-infinite horizon nonlinear model predictive control (QIH-NMPC) scheme is obtained by an appropriate choice of the terminal region and the terminal penalty term. This paper presents a new method to enlarge the terminal region, and therefore the domain of attraction of the QIH-NMPC scheme. The proposed method applies a parameter-dependent terminal controller. The problem of maximizing the terminal region is formulated as a convex optimization problem based on linear matrix inequalities. Compared to existing methods using a linear time-invariant terminal controller, the presented approach may enlarge the terminal region significantly. This is confirmed via simulations of an example system.


Nonlinear Model predictive control Terminal invariant sets Linear differential inclusion Linear matrix inequality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica 36(6), 789–814 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen, H., Allgöwer, F.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34(10), 1205–1217 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chen, W.H., O’Relly, J., Ballance, D.J.: On the terminal region of model predictive control for non-linear systems with input/state constraints. Int. J. Control Signal Process 17, 195–207 (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Yu, S.-Y., Chen, H., Zhang, P., Li, X.-J.: An LMI optimization approach for enlarging the terminal region of NMPC. Acta Automatica Sinca 34, 798–804 (2008)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cannon, M., Deshmukh, V., Kouvaritakis, B.: Nonlinear model predictive control with polytopic invariant sets. Automatica 39, 1487–1494 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ong, C., Sui, D., Gilbert, E.: Enlarging the terminal region of nonlinear model predictive control using the supporting vector machine method. Automatica 42, 1011–1016 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Yu, S.-Y., Chen, H., Li, X.-J.: Enlarging the terminal region of NMPC based on T-S fuzzy model (submitted, 2007)Google Scholar
  8. 8.
    Chen, H.: Stability and Robustness Considerations in Nonlinear Model Predictive Control. usseldorf: Fortschr.-Ber. VDI Reihe 8 Nr. 674, VDI Verlag (1997)Google Scholar
  9. 9.
    Khalil, H.: Nonlinear Systems (third version). Prentice-Hall, New York (2002)Google Scholar
  10. 10.
    Boyd, S., El Ghaoui, L., Feron, E., Balakishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)zbMATHGoogle Scholar
  11. 11.
    Scherer, C.W., Weiland, S.: Linear Matrix Inequalities in Control, DISC Lecture note, Dutch Institute of Systems and Control (2000)Google Scholar
  12. 12.
    Gao, X.: Control for T-S fuzzy systems based on LMI optimization. Dissertation, Jilin University (2006) (in Chinese)Google Scholar
  13. 13.
    Nesterov, Y., Nemirovsky, A.: Interior point polynomial methods in convex programming. SIAM Publications, Philadelphia (1994)Google Scholar
  14. 14.
    Magni, L., Nicolao, G.D., Scattolini, R.: A stabilizing model-based predictive control algorithm for nonlinear systems. Automatica 37, 1351–1362 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Shuyou Yu
    • 1
    • 2
  • Hong Chen
    • 2
  • Christoph Böhm
    • 1
  • Frank Allgöwer
    • 1
  1. 1.Institute for Systems Theory and Automatic ControlUniversity of StuttgartGermany
  2. 2.Department of Control Science and EngineeringJilin UniversityChina

Personalised recommendations