Advertisement

Adaptive Robust MPC: A Minimally-Conservative Approach

  • Darryl DeHaan
  • Martin Guay
  • Veronica Adetola
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 384)

Abstract

Although there is great motivation for adaptive approaches to nonlinear model prediction control, few results to date can guarantee feasible adaptive stabilization in the presence of state or input constraints. By adapting a set-valued measure of the parametric uncertainty within the framework of robust nonlinear-MPC, the results of this paper establish such constrained adaptive stability. Furthermore, it is shown that the ability to account for future adaptation has multiple benefits, including both the ability to guarantee an optimal notion of excitation in the system without requiring dither injection, as well as the ability to incorporate substantially less conservative designs of the terminal penalty.

Keywords

Model Predictive Control Adaptive Control Robust Control Nonlinear Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adetola, V., Guay, M.: Adaptive receding horizon control of nonlinear systems. In: Proc. IFAC Symposium on Nonlinear Control Systems, Stuttgart, Germany, pp. 1055–1060 (2004)Google Scholar
  2. 2.
    Aubin, J.P.: Viability Theory. In: Systems & Control: Foundations & Applications. Birkhäuser, Boston (1991)Google Scholar
  3. 3.
    Cao, C., Annaswamy, A.: Parameter convergence in systems with a general nonlinear parameterization using a hierarchical algorithm. In: Proc. American Control Conference, pp. 376–381 (2002)Google Scholar
  4. 4.
    Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Grad. Texts in Math, vol. 178. Springer, New York (1998)zbMATHGoogle Scholar
  5. 5.
    DeHaan, D., Adetola, V., Guay, M.: Adaptive robust MPC: An eye towards computational simplicity. In: Proc. IEEE Conf. on Decision and Control (submitted, 2006), http://chee.queensu.ca/~dehaan/publications.html
  6. 6.
    Grimm, G., Messina, M., Tuna, S., Teel, A.: Nominally robust model predictive control with state constraints. In: Proc. IEEE Conf. on Decision and Control, pp. 1413–1418 (2003)Google Scholar
  7. 7.
    Grimm, G., Messina, M., Tuna, S., Teel, A.: Examples when model predictive control is non-robust. Automatica 40(10), 1729–1738 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Marruedo, D., Alamo, T., Camacho, E.: Input-to-state stable MPC for constrained discrete-time nonlinear systems with bounded additive uncertainties. In: Proc. IEEE Conf. on Decision and Control, pp. 4619–4624 (2002)Google Scholar
  9. 9.
    Mayne, D.Q., Michalska, H.: Adaptive receding horizon control for constrained nonlinear systems. In: Proc. IEEE Conf. on Decision and Control, pp. 1286–1291 (1993)Google Scholar
  10. 10.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica 36, 789–814 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Safonov, M., Tsao, T.: The unfalsified control concept and learning. IEEE Trans. Automat. Contr. 42(6), 843–847 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Scokaert, P.O.M., Mayne, D.Q.: Min-max feedback model predictive control for constrained linear systems. IEEE Trans. Automat. Contr. 43(8), 1136–1142 (1998)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Darryl DeHaan
    • 1
  • Martin Guay
    • 2
  • Veronica Adetola
    • 2
  1. 1.Praxair Inc.USA
  2. 2.Dept. Chemical EngineeringQueen’s UniversityKingstonCanada

Personalised recommendations