Advertisement

MPC for Tracking of Constrained Nonlinear Systems

  • D. Limon
  • A. Ferramosca
  • I. Alvarado
  • T. Alamo
  • E. F. Camacho
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 384)

Abstract

This paper deals with the tracking problem for constrained nonlinear systems using a model predictive control (MPC) law. MPC provides a control law suitable for regulating constrained linear and nonlinear systems to a given target steady state. However, when the target operating point changes, the feasibility of the controller may be lost and the controller fails to track the reference. In this paper, a novel MPC for tracking changing constant references is presented. This controller extend a recently presented MPC for tracking for constrained linear systems to the nonlinear case. The main characteristics of this controller are: considering an artificial steady state as a decision variable, minimizing a cost that penalizes the error with the artificial steady state, adding to the cost function an additional term that penalizes the deviation between the artificial steady state and the target steady state (the so-called offset cost function) and considering an invariant set for tracking as extended terminal constraint. The properties of this controller has been tested on a constrained CSTR simulation model.

Keywords

Nonlinear systems Nonlinear Model Predictive Control Tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Camacho, E.F., Bordons, C.: Model Predictive Control, 2nd edn. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  2. 2.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica 36, 789–814 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Rossiter, J.A., Kouvaritakis, B., Gossner, J.R.: Guaranteeing feasibility in constrained stable generalized predictive control. IEEE Proc. Control theory Appl. 143, 463–469 (1996)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bemporad, A., Casavola, A., Mosca, E.: Nonlinear control of constrained linear systems via predictive reference management. IEEE Transactions on Automatic Control 42, 340–349 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Pannocchia, G., Kerrigan, E.: Offset-free reciding horizon control of constrained linear systems. AIChE Journal 51, 3134–3146 (2005)CrossRefGoogle Scholar
  6. 6.
    Alvarado, I.: Model Predictive Control for Tracking Constrained Linear Systems. PhD thesis, Univ. de Sevilla (2007)Google Scholar
  7. 7.
    Findeisen, R., Chen, H., Allgöwer, F.: Nonlinear predictive control for setpoint families. In: Proc. of the American Control Conference (2000)Google Scholar
  8. 8.
    Magni, L., De Nicolao, G., Scattolini, R.: Output feedback and tracking of nonlinear systems with model predictive control. Automatica 37, 1601–1607 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Magni, L., Scattolini, R.: On the solution of the tracking problem forn non-linear systems with MPC 36(8), 477–484 (2005)Google Scholar
  10. 10.
    Angeli, D., Mosca, E.: Command governors for constrained nonlinear systems. IEEE Transactions on Automatic Control 44, 816–820 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gilbert, E., Kolmanovsky, I.: Nonlinear tracking control in the presence of state and control constraints: A generalized reference governor. Automatica 38, 2063–2073 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chisci, L., Zappa, G.: Dual mode predictive tracking of piecewise constant references for constrained linear systems. Int. J. Control 76, 61–72 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Chisci, L., Falugi, P., Zappa, G.: Predictive tracking control of constrained nonlinear systems. IEE Proc.-Control Theory Appl. 152(3), 309–316 (2005)CrossRefGoogle Scholar
  14. 14.
    Limon, D., Alvarado, I., Alamo, T., Camacho, E.F.: MPC for tracking of piece-wise constant references for constrained linear systems. Automatica (in press) (2008)Google Scholar
  15. 15.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2006)Google Scholar
  16. 16.
    Cannon, M., Deshmukh, V., Kouvaritakis, B.: Nonlinear model predictive control with polytopic invariant sets. Automatica 39, 1487–1494 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Magni, L., De Nicolao, G., Magnani, L., Scattolini, R.: A stabilizing model-based predictive control algorithm for nonlinear systems. Automatica 37, 1351–1362 (2001)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • D. Limon
    • 1
  • A. Ferramosca
    • 1
  • I. Alvarado
    • 1
  • T. Alamo
    • 1
  • E. F. Camacho
    • 1
  1. 1.Departamento de Ingeniería de Sistemas y Automática.Universidad de Sevilla, Escuela Superior de Ingenieros.SevillaSpain

Personalised recommendations