Stabilizing Nonlinear Predictive Control over Nondeterministic Communication Networks

  • R. Findeisen
  • P. Varutti
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 384)


Networked control systems are systems in which distributed controllers, sensors, actuators and plants are connected via a shared communication network. The use of nondeterministic networks introduces two major issues: communication delays and packet dropouts. These problems cannot be avoided and they might lead to a degradation in performance, or, even worse, to instability of the system. Thus, it is important to take network effects directly into account. In this paper, nonlinear continuous time networked control systems are considered and a nonlinear model predictive controller that is able to compensate the network nondeterminism is outlined.


nonlinear continuous time systems networked control systems timevarying delays packet dropouts nonlinear model predictive control stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alldredge, G., Liberatore, V., Branicky, M.S.: Play-back buffers in networked control systems, evaluation and design. In: Amer. Cont. Conf, pp. 3106–3113 (2008)Google Scholar
  2. 2.
    Carnevale, D., Teel, A.R., Nešić, D.: A lyapunov proof of an improved maximum allowable transfer interval for networked control systems. IEEE Trans. Automat. Contr. 52(5), 892–897 (2007)CrossRefGoogle Scholar
  3. 3.
    Findeisen, R.: Nonlinear Model Predictive Control: A Sampled-Data Feedback Perspective. PhD thesis, University of Stuttgart (2006)Google Scholar
  4. 4.
    Findeisen, R., Allgöwer, F.: Computational delay in nonlinear model predictive control. In: Proc. Int. Symp. Adv. Contr. of Chem. Proc., Hong Kong, PRC, pp. 427–432 (2004)Google Scholar
  5. 5.
    Fontes, F.: A general framework to design stabilizing nonlinear model predictive controllers. Sys. Contr. Lett. 42(2), 127–143 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Garone, E., Sinopoli, B., Casavola, A.: LQG control for distributed systems over TCP-like erasure channels. In: Proc. 46th IEEE Conf. on Dec. and Cont., December 12–14, pp. 44–49 (2007)Google Scholar
  7. 7.
    Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proc. of the IEEE 95(1), 138–162 (2007)CrossRefGoogle Scholar
  8. 8.
    Magni, L., Scattolini, R.: Stabilizing model predictive control of nonlinear continuous time systems. Ann. Rev. in Cont. 28, 1–11 (2004)Google Scholar
  9. 9.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica 36(6), 789–814 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Nešić, D., Teel, A.R.: Input-output stability properties of networked control systems. IEEE Trans. Automat. Contr. 49(10), 1650–1667 (2004)CrossRefGoogle Scholar
  11. 11.
    Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K., Sastry, S.S.: Foundations of control and estimation over lossy networks. Proc. of the IEEE 95(1), 163–187 (2007)CrossRefGoogle Scholar
  12. 12.
    Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Sastry, S.: An LQG optimal linear controller for control systems with packet losses. In: Proc. and 2005 Eur. Cont. Conf. Dec. and Cont. CDC-ECC 2005, 44th IEEE Conf. on, December 12–15, vol. 463, pp. 458–463 (2005)Google Scholar
  13. 13.
    Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Sastry, S.: Optimal linear LQG control over lossy networks without packet acknowledgment. In: Proc. 45th IEEE Conf. on Dec. and Cont., December 13–15, pp. 392–397 (2006)Google Scholar
  14. 14.
    Sun, S., Xie, L., Xiao, W., Soh, Y.C.: Optimal linear estimation for systems with multiple packet dropouts. Automatica 44, 1333–1342 (2008)CrossRefGoogle Scholar
  15. 15.
    Tipsuwan, Y., Chow, M.Y.: Control methodologies in networked control systems. Cont. Eng. Pract. 11, 1099–1111 (2003)CrossRefGoogle Scholar
  16. 16.
    Walsh, G.C., Beldiman, O., Bushnell, L.G.: Asymptotic behavior of nonlinear networked control systems. IEEE Trans. Automat. Contr. 46(7), 1093–1097 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Zhang, W., Branicky, M.S., Phillips, S.M.: Stability of networked control systems. IEEE Contr. Sys. Mag, 84–99 (2001)Google Scholar
  18. 18.
    Zhu, X.L., Yang, G.H.: New results on stability analysis of networked control systems. In: Amer. Cont. Conf., pp. 3792–3797 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • R. Findeisen
    • 1
  • P. Varutti
    • 1
  1. 1.Institute for Automation EngineeringOtto-von-Guericke UniversitätMagdeburgGermany

Personalised recommendations