Skip to main content

Optimizing Process Economic Performance Using Model Predictive Control

  • Chapter

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 384))

Abstract

The current paradigm in essentially all industrial advanced process control systems is to decompose a plant’s economic optimization into two levels. The first level performs a steady-state optimization. This level is usually referred to as real-time optimization (RTO). The RTO determines the economically optimal plant operating conditions (setpoints) and sends these setpoints to the second level, the advanced control system, which performs a dynamic optimization. Many advanced process control systems use some form of model predictive control or MPC for this layer. The MPC uses a dynamic model and regulates the plant dynamic behavior to meet the setpoints determined by the RTO.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aske, E.M.B., Strand, S., Skogestad, S.: Coordinator MPC for maximizing plant throughput. Comput. Chem. Eng. 32, 195–204 (2008)

    Article  Google Scholar 

  2. Backx, T., Bosgra, O., Marquardt, W.: Integration of model predictive control and optimization of processes. In: Advanced Control of Chemical Processes (June 2000)

    Google Scholar 

  3. Bailey, J.E.: Periodic Operation of Chemical Reactors: A Review. Chem. Eng. Commun. 1(3), 111–124 (1974)

    Article  Google Scholar 

  4. Brock, W.A., Haurie, A.: On existence of overtaking optimal trajectories over an infinite time horizon. Math. Oper. Res. 1, 337–346 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brosilow, C., Zhao, G.Q.: A linear programming approach to constrained multivariable process control. Contr. Dyn. Syst. 27, 141 (1988)

    Google Scholar 

  6. Carlson, D.A., Haurie, A.B., Leizarowitz, A.: Infinite Horizon Optimal Control, 2nd edn. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  7. Cutler, C.R., Perry, R.T.: Real time optimization with multivariable control is required to maximize profits. Comput. Chem. Eng. 7, 663–667 (1983)

    Article  Google Scholar 

  8. DeHaan, D., Guay, M.: Extremum seeking control of nonlinear systems with parametric uncertainties and state constraints. In: Proceedings of the 2004 American Control Conference, pp. 596–601 (July 2004)

    Google Scholar 

  9. Dorfman, R., Samuelson, P., Solow, R.: Linear Programming and Economic Analysis. McGraw-Hill, New York (1958)

    MATH  Google Scholar 

  10. Duvall, P.M., Riggs, J.B.: On-line optimization of the Tennessee Eastman challenge problem. J. Proc. Cont. 10, 19–33 (2000)

    Article  Google Scholar 

  11. Engell, S.: Feedback control for optimal process operation. J. Proc. Cont. 17, 203–219 (2007)

    Article  Google Scholar 

  12. Findeisen, W., Bailey, F., Bryds, M., Malinowski, K., Tatjewski, P., Wozniak, A.: Control and Coordination in Hierarchical Systems. John Wiley & Sons, New York (1980)

    MATH  Google Scholar 

  13. Forbes, J.F., Marlin, T.E.: Design cost: a systematic approach to technology selection for model-based real-time optimization systems. Comput. Chem. Eng. 20, 717–734 (1996)

    Article  Google Scholar 

  14. Guay, M., Zhang, T.: Adaptive extremum seeking control of nonlinear dynamic systems with parametric uncertainty. Automatica 39, 1283–1293 (2003)

    MATH  MathSciNet  Google Scholar 

  15. Guay, M., Dochain, D., Perrier, M.: Adaptive extremum seeking control of nonisothermal continuous stirred tank reactors with temperature constraints. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii (December 2003)

    Google Scholar 

  16. Helbig, A., Abel, O., Marquardt, W.: Structural Concepts for Optimization Based Control of Transient Processes. Nonlinear Model Predictive Control (2000)

    Google Scholar 

  17. Huesman, A.E.M., Bosgra, O.H., Van den Hof, P.M.J.: Degrees of Freedom Analysis of Economic Dynamic Optimal Plantwide Operation. In: Preprints of 8th IFAC International Symposium on Dynamics and Control of Process Systems (DYCOPS), vol. 1, pp. 165–170 (2007)

    Google Scholar 

  18. Jing, C.M., Joseph, B.: Performance and stability analysis of LP-MPC and QP-MPC cascade control systems. AIChE J. 45, 1521–1534 (1999)

    Article  Google Scholar 

  19. Kadam, J., Marquardt, W.: Integration of Economical Optimization and Control for Intentionally Transient Process Operation. LNCIS, vol. 358, pp. 419–434 (2007)

    Google Scholar 

  20. Kadam, J.V., Marquardt, W., Schlegel, M., Backx, T., Bosgra, O.H., Brouwer, P.J., Dünnebier, G., van Hessem, D., Tiagounov, A., de Wolf, S.: Towards integrated dynamic real-time optimization and control of industrial processes. In: Proceedings Foundations of Computer Aided Process Operations (FOCAPO 2003), pp. 593–596 (2003)

    Google Scholar 

  21. Krstić, M., Wang, H.-H.: Stability of extremum seeking feedback for general nonlinear dynamic systems. Automatica 36, 595–601 (2000)

    Article  MATH  Google Scholar 

  22. Lee, C., Bailey, J.: Modification of Consecutive-Competitive Reaction Selectivity by Periodic Operation. Ind. Eng. Chem. Proc. Des. Dev. 19(1), 160–166 (1980)

    Article  Google Scholar 

  23. Leizarowitz, A.: Infinite horizon autonomous systems with unbounded cost. Appl. Math. Opt. 13, 19–43 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  24. Luyben, W.L., Tyreus, B., Luyben, M.L.: Plantwide Process Control. McGraw-Hill, New York (1999)

    Google Scholar 

  25. Marlin, T.E.: Process Control. McGraw-Hill, New York (1995)

    Google Scholar 

  26. Marlin, T.E., Hrymak, A.N.: Real-time operations optimization of continuous processes. In: Kantor, J.C., García, C.E., Carnahan, B. (eds.) Chemical Process Control–V, pp. 156–164. CACHE, AIChE (1997)

    Google Scholar 

  27. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. McKenzie, L.W.: Accumulation programs of maximum utility and the von Neumann facet. In: Wolfe, J.N. (ed.) Value, Capital, and Growth, pp. 353–383. Edinburgh University Press/ Aldine Publishing Company (1968)

    Google Scholar 

  29. McKenzie, L.W.: Turnpike theory. Econometrica 44(5), 841–865 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  30. Miletic, I., Marlin, T.E.: Results analysis for real-time optimization (RTO): deciding when to change the plant operation. Comput. Chem. Eng. 20, 1077 (1996)

    Article  Google Scholar 

  31. Morari, M., Arkun, Y., Stephanopoulos, G.: Studies in the synthesis of control structures for chemical processes. Part I: Formulation of the problem. Process decomposition and the classification of the control tasks. Analysis of the optimizing control structures. AIChE J. 26(2), 220–232 (1980)

    Article  MathSciNet  Google Scholar 

  32. Morshedi, A.M., Cutler, C.R., Skrovanek, T.A.: Optimal solution of dynamic matrix control with linear programming techniques (LDMC). In: Proceedings of the 1985 American Control Conference, pp. 199–208 (June 1985)

    Google Scholar 

  33. Muske, K.R.: Steady-state target optimization in linear model predictive control. In: Proceedings of the American Control Conference, Albuquerque, NM, pp. 3597–3601 (June 1997)

    Google Scholar 

  34. Muske, K.R., Rawlings, J.B.: Linear model predictive control of unstable processes. J. Proc. Cont. 3(2), 85–96 (1993)

    Article  Google Scholar 

  35. Ramsey, F.P.: A mathematical theory of saving. Econ. J. 38(152), 543–559 (1928)

    Article  Google Scholar 

  36. Rao, C.V., Rawlings, J.B.: Steady states and constraints in model predictive control. AIChE J. 45(6), 1266–1278 (1999)

    Article  Google Scholar 

  37. Rawlings, J.B., Bonné, D., Jørgensen, J.B., Venkat, A.N., Jørgensen, S.B.: Unreachable setpoints in model predictive control. IEEE Trans. Auto. Cont. 53(9), 2209–2215 (2008)

    Article  Google Scholar 

  38. Rotava, O., Zanin, A.: Multivariable control and real-time optimization — an industrial practical view. Hydrocarbon Processing, pp. 61–71 (June 2005)

    Google Scholar 

  39. Sakizlis, V., Perkins, J.D., Pistikopoulos, E.N.: Recent advances in optimization-based simultaneous process and control design. Comput. Chem. Eng. 28, 2069–2086 (2004)

    Article  Google Scholar 

  40. Scokaert, P.O.M., Mayne, D.Q., Rawlings, J.B.: Suboptimal model predictive control (feasibility implies stability). IEEE Trans. Auto. Cont. 44(3), 648–654 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sequeira, E., Graells, M., Puigjaner, L.: Real-time evolution of online optimization of continuous processes. Ind. Eng. Chem. Res. 41, 1815–1825 (2002)

    Article  Google Scholar 

  42. Sincic, D., Bailey, J.: Analytical optimization and sensitivity analysis of forced periodic chemical processes. Chem. Eng. Sci. 35, 1153–1161 (1980)

    Article  Google Scholar 

  43. Skogestad, S.: Plantwide control: the search for the self-optimizing control structure. J. Proc. Cont. 10, 487–507 (2000)

    Article  Google Scholar 

  44. Watanabe, N., Onogi, K., Matsubara, M.: Periodic control of continuous stirred tank reactors-II: The Pi criterion and its applications to isothermal cases. Chem. Eng. Sci. 36, 809–818 (1981)

    Article  Google Scholar 

  45. Watanabe, N., Matsubara, M., Kurimoto, H., Onogi, K.: Periodic control of continuous stirred tank reactors-I: Cases of a nonisothermal single reactor. Chem. Eng. Sci. 37, 745–752 (1982)

    Article  Google Scholar 

  46. Yip, W.S., Marlin, T.E.: Designing plant experiments for real-time optimization systems. Control Eng. Prac. 11, 837–845 (2003)

    Article  Google Scholar 

  47. Yip, W.S., Marlin, T.E.: The effect of model fidelity on real-time optimization performance. Comput. Chem. Eng. 28, 267–280 (2004)

    Article  Google Scholar 

  48. Yousfi, C., Tournier, R.: Steady-state optimization inside model predictive control. In: Proceedings of American Control Conference, p. 1866 (1991)

    Google Scholar 

  49. Zanin, A.C., Tvrzská de Gouvêa, M., Odloak, D.: Industrial implementation of a real-time optimization strategy for maximizing production of LPG in a FCC unit. Comput. Chem. Eng. 24, 525–531 (2000)

    Article  Google Scholar 

  50. Zanin, A.C., Tvrzská de Gouvêa, M., Odloak, D.: Integrating real-time optimization into the model predictive controller of the FCC system. Control Eng. Practice 10, 819–831 (2002)

    Article  Google Scholar 

  51. Zhang, Y., Forbes, J.F.: Extended design cost: a performance criterion for real-time optimization. Comput. Chem. Eng. 24, 1829–1841 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rawlings, J.B., Amrit, R. (2009). Optimizing Process Economic Performance Using Model Predictive Control. In: Magni, L., Raimondo, D.M., Allgöwer, F. (eds) Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol 384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01094-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01094-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01093-4

  • Online ISBN: 978-3-642-01094-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics