Advertisement

Optimizing Process Economic Performance Using Model Predictive Control

  • James B. Rawlings
  • Rishi Amrit
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 384)

Abstract

The current paradigm in essentially all industrial advanced process control systems is to decompose a plant’s economic optimization into two levels. The first level performs a steady-state optimization. This level is usually referred to as real-time optimization (RTO). The RTO determines the economically optimal plant operating conditions (setpoints) and sends these setpoints to the second level, the advanced control system, which performs a dynamic optimization. Many advanced process control systems use some form of model predictive control or MPC for this layer. The MPC uses a dynamic model and regulates the plant dynamic behavior to meet the setpoints determined by the RTO.

Keywords

optimal control constrained control process economics unreachable setpoints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aske, E.M.B., Strand, S., Skogestad, S.: Coordinator MPC for maximizing plant throughput. Comput. Chem. Eng. 32, 195–204 (2008)CrossRefGoogle Scholar
  2. 2.
    Backx, T., Bosgra, O., Marquardt, W.: Integration of model predictive control and optimization of processes. In: Advanced Control of Chemical Processes (June 2000)Google Scholar
  3. 3.
    Bailey, J.E.: Periodic Operation of Chemical Reactors: A Review. Chem. Eng. Commun. 1(3), 111–124 (1974)CrossRefGoogle Scholar
  4. 4.
    Brock, W.A., Haurie, A.: On existence of overtaking optimal trajectories over an infinite time horizon. Math. Oper. Res. 1, 337–346 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brosilow, C., Zhao, G.Q.: A linear programming approach to constrained multivariable process control. Contr. Dyn. Syst. 27, 141 (1988)Google Scholar
  6. 6.
    Carlson, D.A., Haurie, A.B., Leizarowitz, A.: Infinite Horizon Optimal Control, 2nd edn. Springer, Heidelberg (1991)zbMATHGoogle Scholar
  7. 7.
    Cutler, C.R., Perry, R.T.: Real time optimization with multivariable control is required to maximize profits. Comput. Chem. Eng. 7, 663–667 (1983)CrossRefGoogle Scholar
  8. 8.
    DeHaan, D., Guay, M.: Extremum seeking control of nonlinear systems with parametric uncertainties and state constraints. In: Proceedings of the 2004 American Control Conference, pp. 596–601 (July 2004)Google Scholar
  9. 9.
    Dorfman, R., Samuelson, P., Solow, R.: Linear Programming and Economic Analysis. McGraw-Hill, New York (1958)zbMATHGoogle Scholar
  10. 10.
    Duvall, P.M., Riggs, J.B.: On-line optimization of the Tennessee Eastman challenge problem. J. Proc. Cont. 10, 19–33 (2000)CrossRefGoogle Scholar
  11. 11.
    Engell, S.: Feedback control for optimal process operation. J. Proc. Cont. 17, 203–219 (2007)CrossRefGoogle Scholar
  12. 12.
    Findeisen, W., Bailey, F., Bryds, M., Malinowski, K., Tatjewski, P., Wozniak, A.: Control and Coordination in Hierarchical Systems. John Wiley & Sons, New York (1980)zbMATHGoogle Scholar
  13. 13.
    Forbes, J.F., Marlin, T.E.: Design cost: a systematic approach to technology selection for model-based real-time optimization systems. Comput. Chem. Eng. 20, 717–734 (1996)CrossRefGoogle Scholar
  14. 14.
    Guay, M., Zhang, T.: Adaptive extremum seeking control of nonlinear dynamic systems with parametric uncertainty. Automatica 39, 1283–1293 (2003)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Guay, M., Dochain, D., Perrier, M.: Adaptive extremum seeking control of nonisothermal continuous stirred tank reactors with temperature constraints. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii (December 2003)Google Scholar
  16. 16.
    Helbig, A., Abel, O., Marquardt, W.: Structural Concepts for Optimization Based Control of Transient Processes. Nonlinear Model Predictive Control (2000)Google Scholar
  17. 17.
    Huesman, A.E.M., Bosgra, O.H., Van den Hof, P.M.J.: Degrees of Freedom Analysis of Economic Dynamic Optimal Plantwide Operation. In: Preprints of 8th IFAC International Symposium on Dynamics and Control of Process Systems (DYCOPS), vol. 1, pp. 165–170 (2007)Google Scholar
  18. 18.
    Jing, C.M., Joseph, B.: Performance and stability analysis of LP-MPC and QP-MPC cascade control systems. AIChE J. 45, 1521–1534 (1999)CrossRefGoogle Scholar
  19. 19.
    Kadam, J., Marquardt, W.: Integration of Economical Optimization and Control for Intentionally Transient Process Operation. LNCIS, vol. 358, pp. 419–434 (2007)Google Scholar
  20. 20.
    Kadam, J.V., Marquardt, W., Schlegel, M., Backx, T., Bosgra, O.H., Brouwer, P.J., Dünnebier, G., van Hessem, D., Tiagounov, A., de Wolf, S.: Towards integrated dynamic real-time optimization and control of industrial processes. In: Proceedings Foundations of Computer Aided Process Operations (FOCAPO 2003), pp. 593–596 (2003)Google Scholar
  21. 21.
    Krstić, M., Wang, H.-H.: Stability of extremum seeking feedback for general nonlinear dynamic systems. Automatica 36, 595–601 (2000)zbMATHCrossRefGoogle Scholar
  22. 22.
    Lee, C., Bailey, J.: Modification of Consecutive-Competitive Reaction Selectivity by Periodic Operation. Ind. Eng. Chem. Proc. Des. Dev. 19(1), 160–166 (1980)CrossRefGoogle Scholar
  23. 23.
    Leizarowitz, A.: Infinite horizon autonomous systems with unbounded cost. Appl. Math. Opt. 13, 19–43 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Luyben, W.L., Tyreus, B., Luyben, M.L.: Plantwide Process Control. McGraw-Hill, New York (1999)Google Scholar
  25. 25.
    Marlin, T.E.: Process Control. McGraw-Hill, New York (1995)Google Scholar
  26. 26.
    Marlin, T.E., Hrymak, A.N.: Real-time operations optimization of continuous processes. In: Kantor, J.C., García, C.E., Carnahan, B. (eds.) Chemical Process Control–V, pp. 156–164. CACHE, AIChE (1997)Google Scholar
  27. 27.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica 36(6), 789–814 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    McKenzie, L.W.: Accumulation programs of maximum utility and the von Neumann facet. In: Wolfe, J.N. (ed.) Value, Capital, and Growth, pp. 353–383. Edinburgh University Press/ Aldine Publishing Company (1968)Google Scholar
  29. 29.
    McKenzie, L.W.: Turnpike theory. Econometrica 44(5), 841–865 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Miletic, I., Marlin, T.E.: Results analysis for real-time optimization (RTO): deciding when to change the plant operation. Comput. Chem. Eng. 20, 1077 (1996)CrossRefGoogle Scholar
  31. 31.
    Morari, M., Arkun, Y., Stephanopoulos, G.: Studies in the synthesis of control structures for chemical processes. Part I: Formulation of the problem. Process decomposition and the classification of the control tasks. Analysis of the optimizing control structures. AIChE J. 26(2), 220–232 (1980)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Morshedi, A.M., Cutler, C.R., Skrovanek, T.A.: Optimal solution of dynamic matrix control with linear programming techniques (LDMC). In: Proceedings of the 1985 American Control Conference, pp. 199–208 (June 1985)Google Scholar
  33. 33.
    Muske, K.R.: Steady-state target optimization in linear model predictive control. In: Proceedings of the American Control Conference, Albuquerque, NM, pp. 3597–3601 (June 1997)Google Scholar
  34. 34.
    Muske, K.R., Rawlings, J.B.: Linear model predictive control of unstable processes. J. Proc. Cont. 3(2), 85–96 (1993)CrossRefGoogle Scholar
  35. 35.
    Ramsey, F.P.: A mathematical theory of saving. Econ. J. 38(152), 543–559 (1928)CrossRefGoogle Scholar
  36. 36.
    Rao, C.V., Rawlings, J.B.: Steady states and constraints in model predictive control. AIChE J. 45(6), 1266–1278 (1999)CrossRefGoogle Scholar
  37. 37.
    Rawlings, J.B., Bonné, D., Jørgensen, J.B., Venkat, A.N., Jørgensen, S.B.: Unreachable setpoints in model predictive control. IEEE Trans. Auto. Cont. 53(9), 2209–2215 (2008)CrossRefGoogle Scholar
  38. 38.
    Rotava, O., Zanin, A.: Multivariable control and real-time optimization — an industrial practical view. Hydrocarbon Processing, pp. 61–71 (June 2005)Google Scholar
  39. 39.
    Sakizlis, V., Perkins, J.D., Pistikopoulos, E.N.: Recent advances in optimization-based simultaneous process and control design. Comput. Chem. Eng. 28, 2069–2086 (2004)CrossRefGoogle Scholar
  40. 40.
    Scokaert, P.O.M., Mayne, D.Q., Rawlings, J.B.: Suboptimal model predictive control (feasibility implies stability). IEEE Trans. Auto. Cont. 44(3), 648–654 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Sequeira, E., Graells, M., Puigjaner, L.: Real-time evolution of online optimization of continuous processes. Ind. Eng. Chem. Res. 41, 1815–1825 (2002)CrossRefGoogle Scholar
  42. 42.
    Sincic, D., Bailey, J.: Analytical optimization and sensitivity analysis of forced periodic chemical processes. Chem. Eng. Sci. 35, 1153–1161 (1980)CrossRefGoogle Scholar
  43. 43.
    Skogestad, S.: Plantwide control: the search for the self-optimizing control structure. J. Proc. Cont. 10, 487–507 (2000)CrossRefGoogle Scholar
  44. 44.
    Watanabe, N., Onogi, K., Matsubara, M.: Periodic control of continuous stirred tank reactors-II: The Pi criterion and its applications to isothermal cases. Chem. Eng. Sci. 36, 809–818 (1981)CrossRefGoogle Scholar
  45. 45.
    Watanabe, N., Matsubara, M., Kurimoto, H., Onogi, K.: Periodic control of continuous stirred tank reactors-I: Cases of a nonisothermal single reactor. Chem. Eng. Sci. 37, 745–752 (1982)CrossRefGoogle Scholar
  46. 46.
    Yip, W.S., Marlin, T.E.: Designing plant experiments for real-time optimization systems. Control Eng. Prac. 11, 837–845 (2003)CrossRefGoogle Scholar
  47. 47.
    Yip, W.S., Marlin, T.E.: The effect of model fidelity on real-time optimization performance. Comput. Chem. Eng. 28, 267–280 (2004)CrossRefGoogle Scholar
  48. 48.
    Yousfi, C., Tournier, R.: Steady-state optimization inside model predictive control. In: Proceedings of American Control Conference, p. 1866 (1991)Google Scholar
  49. 49.
    Zanin, A.C., Tvrzská de Gouvêa, M., Odloak, D.: Industrial implementation of a real-time optimization strategy for maximizing production of LPG in a FCC unit. Comput. Chem. Eng. 24, 525–531 (2000)CrossRefGoogle Scholar
  50. 50.
    Zanin, A.C., Tvrzská de Gouvêa, M., Odloak, D.: Integrating real-time optimization into the model predictive controller of the FCC system. Control Eng. Practice 10, 819–831 (2002)CrossRefGoogle Scholar
  51. 51.
    Zhang, Y., Forbes, J.F.: Extended design cost: a performance criterion for real-time optimization. Comput. Chem. Eng. 24, 1829–1841 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • James B. Rawlings
    • 1
  • Rishi Amrit
    • 1
  1. 1.Department of Chemical and Biological EngineeringUniversity of WisconsinMadison 

Personalised recommendations