Passino, K.M.: Biomimicry of Bacterial Foraging for Distributed Optimization and Control. IEEE Control Systems Magazine, 52–67 (2002)
Google Scholar
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Harbor (1975)
Google Scholar
Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. John Wiley, Chichester (1966)
MATH
Google Scholar
Rechenberg, I.: Evolutionsstrategie 1994. Frommann-Holzboog, Stuttgart (1994)
Google Scholar
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)
Google Scholar
Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)
CrossRef
Google Scholar
Berg, H., Brown, D.: Chemotaxis in escherichia coli analysed by three-dimensional tracking. Nature 239, 500–504 (1972)
CrossRef
Google Scholar
Berg, H.: Random Walks in Biology. Princeton Univ. Press, Princeton (1993)
Google Scholar
Liu, Y., Passino, K.M.: Biomimicry of Social Foraging Bacteria for Distributed Optimization: Models, Principles, and Emergent Behaviors. Journal of Optimization Theory And Applications 115(3), 603–628 (2002)
MATH
CrossRef
MathSciNet
Google Scholar
Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1972)
MATH
Google Scholar
Bracewell, R.: Heaviside’s Unit Step Function, H(x), The Fourier Transform and Its Applications, 3rd edn., pp. 57–61. McGraw-Hill, New York (1999)
Google Scholar
Snyman, J.A.: Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms. Springer Publishing, Heidelberg (2005)
MATH
Google Scholar
Dasgupta, S., Das, S., Abraham, A., Biswas, A.: Adaptive Computational Chemotaxis in Bacterial Foraging Optimization: An Analysis. IEEE Transactions on Evolutionary Computation (in press, 2009)
Google Scholar
Abraham, A., Biswas, A., Dasgupta, S., Das, S.: Anaysis of Reproduction Operator in Bacterial Foraging Optimization. In: IEEE Congress on Evolutionary Computation CEC 2008, IEEE World Congress on Computational Intelligence, WCCI 2008, pp. 1476–1483. IEEE Press, USA (2008)
CrossRef
Google Scholar
Murray, J.D.: Mathematical Biology. Springer, New York (1989)
MATH
Google Scholar
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford Univ. Press, New York (1999)
MATH
Google Scholar
Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. Advanced Biophysics 22, 1–94 (1986)
CrossRef
Google Scholar
Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)
CrossRef
Google Scholar
Kim, D.H., Abraham, A., Cho, J.H.: A hybrid genetic algorithm and bacterial foraging approach for global optimization. Information Sciences 177(18), 3918–3937 (2007)
CrossRef
Google Scholar
Biswas, A., Dasgupta, S., Das, S., Abraham, A.: Synergy of PSO and Bacterial Foraging Optimization: A Comparative Study on Numerical Benchmarks. In: Corchado, E., et al. (eds.) Second International Symposium on Hybrid Artificial Intelligent Systems (HAIS 2007), Innovations in Hybrid Intelligent Systems, ASC. Advances in Soft computing Series, vol. 44, pp. 255–263. Springer, Germany (2007)
Google Scholar
Storn, R., Price, K.: Differential evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359 (1997)
MATH
CrossRef
MathSciNet
Google Scholar
Biswas, A., Dasgupta, S., Das, S., Abraham, A.: A Synergy of Differential Evolution and Bacterial Foraging Algorithm for Global Optimization. Neural Network World 17(6), 607–626 (2007)
Google Scholar
Ulagammai, L., Vankatesh, P., Kannan, P.S., Padhy, N.P.: Application of Bacteria Foraging Technique Trained and Artificial and Wavelet Neural Networks in Load Forecasting. Neurocomputing, 2659–2667 (2007)
Google Scholar
Munoz, M.A., Lopez, J.A., Caicedo, E.: Bacteria Foraging Optimization for Dynamical resource Allocation in a Multizone temperature Experimentation Platform. In: Anal. and Des. of Intel. Sys. using SC Tech., ASC, vol. 41, pp. 427–435 (2007)
Google Scholar
Acharya, D.P., Panda, G., Mishra, S., Lakhshmi, Y.V.S.: Bacteria Foaging Based Independent Component Analysis. In: International Conference on Computational Intelligence and Multimedia Applications. IEEE Press, Los Alamitos (2007)
Google Scholar
Chatterjee, A., Matsuno, F.: Bacteria Foraging Techniques for Solving EKF-Based SLAM Problems. In: Proc. International Control Conference (Control 2006), Glasgow, UK, August 30- September 01 (2006)
Google Scholar
Tripathy, M., Mishra, S.: Bacteria Foraging-Based to Optimize Both Real Power Loss and Voltage Stability Limit. IEEE Transactions on Power Systems 22(1), 240–248 (2007)
CrossRef
Google Scholar
Mishra, S., Bhende, C.N.: Bacterial Foraging Technique-Based Optimized Active Power Filter for Load Compensation. IEEE Transactions on Power Delivery 22(1), 457–465 (2007)
CrossRef
Google Scholar
Mishra, S.: A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation. IEEE Trans. on Evolutionary Computation 9(1), 61–73 (2005)
CrossRef
Google Scholar
Tang, W.J., Wu, Q.H., Saunders, J.R.: A Novel Model for Bacteria Foraging in Varying Environments. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 556–565. Springer, Heidelberg (2006)
CrossRef
Google Scholar
Biswas, A., Das, S., Dasgupta, S., Abraham, A.: Dynamics of Reproduction in Artificial Bacterial Foraging System: Modeling and Stability Analysis. In: IEEE International Conference on Soft Computing as Trans-disciplinary Science and Technology (CSTST 2008), Paris, France, October 27-31 (to appear, 2008)
Google Scholar
Fernandes, C., Ramos, V., Agostinho, C.: Varying the Population Size of Artificial Foraging Swarms on Time Varying Landscapes. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 311–316. Springer, Heidelberg (2005)
CrossRef
Google Scholar
Tripathy, M., Mishra, S., Lai, L.L., Zhang, Q.P.: Transmission Loss Reduction Based on FACTS and Bacteria Foraging Algorithm. In: PPSN, pp. 222–231 (2006)
Google Scholar
Mishra, S., Bhende, C.N.: Bacterial Foraging Technique-Based Optimized Active Power Filter for Load Compensation. IEEE Transactions on Power Delivery 22(1), 457–465 (2007)
CrossRef
Google Scholar
Kim, D.H., Cho, C.H.: Bacterial Foraging Based Neural Network Fuzzy Learning. In: IICAI 2005, pp. 2030–2036 (2005)
Google Scholar
Dasgupta, S., Biswas, A., Das, S., Abraham, A.: Automatic Circle Detection on Images with an Adaptive Bacterial Foraging Algorithm. In: 2008 Genetic and Evolutionary Computation Conference. GECCO 2008. ACM Press, New York (2008)
Google Scholar
Chen, H., Zhu, Y., Hu, K., He, X., Niu, B.: Cooperative Approaches to Bacterial Foraging Optimization. In: ICIC (2), pp. 541–548 (2008)
Google Scholar
Wu, C., Zhang, N., Jiang, J., Yang, J., Liang, Y.: Improved Bacterial Foraging Algorithms and Their Applications to Job Shop Scheduling Problems. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 562–569. Springer, Heidelberg (2007)
CrossRef
Google Scholar