Advertisement

Considerations on the Impact of Ill-Conditioned Configurations in the CML Approach

  • Antonio PunzoEmail author
Conference paper
  • 2.4k Downloads
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

Considering complete designs, the configurations of non-existence of the Maximum Likelihood (ML) estimates for the Partial Credit Model are known in the Joint (JML) approach: null categories and ill-conditioned patterns are the only two sources of trouble. In the Conditional (CML) approach, apart from datasets with null categories, the other “anomalous” configurations are not known. In this paper, the impact of ill-conditioned patterns in the conditional approach, as well as the incidence of CML-anomalous configurations, are both studied by a systematic analysis on small-dimensional data matrices. Obtained results emphasize the presence of a large number of additional CML configurations of non-existence, compared to those valid in the JML case.

Keywords

Conditional maximum likelihood Partial credit model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, E. B. (1995). Polytomous Rasch models and their estimation. In G. H. Fischer, & I. W. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications (pp. 271–291). New York: Springer.Google Scholar
  2. Barndorff-Nielsen, O. (1978). Information and exponential families in statistical theory. New York: Wiley.zbMATHGoogle Scholar
  3. Bertoli-Barsotti, L. (2002). On a condition for the existence of the maximum likelihood estimate for concave log-likelihood functions. In Studi in Onore di Angelo Zanella (pp. 25–42). Milan: Vita & Pensiero.Google Scholar
  4. Bertoli-Barsotti, L. (2005). On the existence and uniqueness of JML estimates for the partial credit model. Psychometrika, 70(3), 517–531.CrossRefMathSciNetGoogle Scholar
  5. Bertoli-Barsotti, L. (2008). Parametrizzazione del PCM e ordinamento (Technical report). DMSIA, University of Bergamo.Google Scholar
  6. Fischer, G. H. (1981). On the existence and uniqueness of maximum-likelihood estimates in the Rasch model. Psychometrika, 46(1), 59–77.zbMATHCrossRefMathSciNetGoogle Scholar
  7. Fischer, G. H. (1995). Derivations of the Rasch model. In G. H. Fischer, & I. W. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications (pp. 15–38). New York: Springer.Google Scholar
  8. Jacobsen, M. (1989). Existence and unicity of MLEs in discrete exponential family distributions. Scandinavian Journal of Statistics, 16, 335–349.MathSciNetGoogle Scholar
  9. Linacre, J. M. (2004). Rasch model estimation: Further topics. Journal of Applied Measurement, 5(1), 95–110.Google Scholar
  10. Mair, P., & Hatzinger, R. (2007). Extended Rasch modeling: The eRm package for the application of IRT models in R. Journal of Statistical Software, 20(9), 1–20.Google Scholar
  11. Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174.zbMATHCrossRefGoogle Scholar
  12. Masters, G. N., & Wright, B. D. (1997). The partial credit model. In W. J. van der Linden, & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 101–121). New York: Springer.Google Scholar
  13. Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16(1), 1–32.CrossRefMathSciNetGoogle Scholar
  14. Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: The Danish Institute of Educational Research.Google Scholar
  15. Rasch, G. (1977). On specific objectivity: An attempt at formalizing the request for generality and validity of scientific statements. The Danish Yearbook of Philosophy, 14(4), 58–93.Google Scholar
  16. Wilson, M., & Masters, G. N. (1993). The partial credit model and null categories. Psychometrika, 58(1), 87–99.CrossRefGoogle Scholar
  17. Wright, B. D., & Masters, G. N. (1982). Rating scale analysis. Chicago: Mesa.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Economics and Quantitative MethodsUniversity of CataniaCataniaItaly

Personalised recommendations