Abstract
Most existing evolutionary approaches to multiobjective optimization aim at finding an appropriate set of compromise solutions, ideally a subset of the Pareto-optimal set. That means they are solving a set problem where the search space consists of all possible solution sets. Taking this perspective, multiobjective evolutionary algorithms can be regarded as hill-climbers on solution sets: the population is one element of the set search space and selection as well as variation implement a specific type of set mutation operator. Therefore, one may ask whether a ‘real’ evolutionary algorithm on solution sets can have advantages over the classical single-population approach. This paper investigates this issue; it presents a multi-population multiobjective optimization framework and demonstrates its usefulness on several test problems and a sensor network application.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aherne, F.J., Thacker, N.A., Rockett, P.I.: Optimising Object Recognition Parameters using a Parallel Multiobjective Genetic Algorithm. In: Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications (GALESIA 1997), pp. 1–6. IEEE Press, Los Alamitos (1997)
Bader, J., Zitzler, E.: HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization. TIK Report 286, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (November 2008)
Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal on Operational Research 181, 1653–1669 (2007)
Branke, J., Schmeck, H., Deb, K., Reddy, M.: Parallelizing Multi-Objective Evolutionary Algorithms: Cone Separation. In: Congress on Evolutionary Computation (CEC 2004), pp. 1952–1957. IEEE Press, Los Alamitos (2004)
Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Heidelberg (2007)
Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley, Chichester (1999)
Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multi-Objective Optimization. In: Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pp. 105–145. Springer, Heidelberg (2005)
Hiroyasu, T., Miki, M., Watanabe, S.: The new model of parallel genetic algorithm in multi-objective optimization problems—divided range multi-objective genetic algorithm. In: Congress on Evolutionary Computation (CEC 2000), pp. 333–340. IEEE Press, Los Alamitos (2000)
Huband, S., Hingston, P., Barone, L., While, L.: A Review of Multiobjective Test Problems and a Scalable Test Problem Toolkit. IEEE Transactions on Evolutionary Computation 10(5), 477–506 (2006)
Igel, C., Hansen, N., Roth, S.: Covariance Matrix Adaptation for Multi-objective Optimization. Evolutionary Computation 15(1), 1–28 (2007)
Lee, J., Hajela, P.: Parallel Genetic Algorithm Implementation in Multidisciplinary Rotor Blade Design. Journal of Aircraft 33(5), 962–969 (1996)
Mezmaz, M., Melab, N., Talbi, E.-G.: Using the Multi-Start and Island Models for Parallel Multi-Objective Optimization on the Computational Grid. In: eScience, p. 112. IEEE Press, Los Alamitos (2006)
Poloni, C.: Hybrid GA for Multi-Objective Aerodynamic Shape Optimization. In: Genetic Algorithms in Engineering and Computer Science, pp. 397–416. John Wiley & Sons, Chichester (1995)
Sawai, H., Adachi, S.: Effects of Hierarchical Migration in a Parallel Distributed Parameter-free GA. In: Congress on Evolutionary Computation (CEC 2000), Piscataway, NJ, pp. 1117–1124. IEEE Press, Los Alamitos (2000)
Stanley, T.J., Mudge, T.: A Parallel Genetic Algorithm for Multiobjective Microprocessor Design. In: International Conference on Genetic Algorithms, pp. 597–604. Morgan Kaufmann Publishers, San Francisco (1995)
Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello Coello, C.A.: Parallel Approaches for Multiobjective Optimization. In: Branke, J., others (eds.) Multiobjective Optimization: Interactive and Evolutionary Approaches, pp. 349–372. Springer, Heidelberg (2008)
Woehrle, M., Brockhoff, D., Hohm, T., Bleuler, S.: Investigating Coverage and Connectivity Trade-offs in Wireless Sensor Networks: The Benefits of MOEAs. TIK Report 294, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (October 2008); accepted for publication at MCDM 2008 conference
Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)
Zitzler, E., Thiele, L., Bader, J.: SPAM: Set Preference Algorithm for Multiobjective Optimization. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 847–858. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bader, J., Brockhoff, D., Welten, S., Zitzler, E. (2009). On Using Populations of Sets in Multiobjective Optimization. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, JK., Sevaux, M. (eds) Evolutionary Multi-Criterion Optimization. EMO 2009. Lecture Notes in Computer Science, vol 5467. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01020-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-01020-0_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01019-4
Online ISBN: 978-3-642-01020-0
eBook Packages: Computer ScienceComputer Science (R0)