Skip to main content

On Using Populations of Sets in Multiobjective Optimization

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5467))

Included in the following conference series:

Abstract

Most existing evolutionary approaches to multiobjective optimization aim at finding an appropriate set of compromise solutions, ideally a subset of the Pareto-optimal set. That means they are solving a set problem where the search space consists of all possible solution sets. Taking this perspective, multiobjective evolutionary algorithms can be regarded as hill-climbers on solution sets: the population is one element of the set search space and selection as well as variation implement a specific type of set mutation operator. Therefore, one may ask whether a ‘real’ evolutionary algorithm on solution sets can have advantages over the classical single-population approach. This paper investigates this issue; it presents a multi-population multiobjective optimization framework and demonstrates its usefulness on several test problems and a sensor network application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aherne, F.J., Thacker, N.A., Rockett, P.I.: Optimising Object Recognition Parameters using a Parallel Multiobjective Genetic Algorithm. In: Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications (GALESIA 1997), pp. 1–6. IEEE Press, Los Alamitos (1997)

    Chapter  Google Scholar 

  2. Bader, J., Zitzler, E.: HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization. TIK Report 286, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (November 2008)

    Google Scholar 

  3. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal on Operational Research 181, 1653–1669 (2007)

    Article  MATH  Google Scholar 

  4. Branke, J., Schmeck, H., Deb, K., Reddy, M.: Parallelizing Multi-Objective Evolutionary Algorithms: Cone Separation. In: Congress on Evolutionary Computation (CEC 2004), pp. 1952–1957. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  5. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  6. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley, Chichester (1999)

    Google Scholar 

  7. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  8. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multi-Objective Optimization. In: Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pp. 105–145. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Hiroyasu, T., Miki, M., Watanabe, S.: The new model of parallel genetic algorithm in multi-objective optimization problems—divided range multi-objective genetic algorithm. In: Congress on Evolutionary Computation (CEC 2000), pp. 333–340. IEEE Press, Los Alamitos (2000)

    Google Scholar 

  11. Huband, S., Hingston, P., Barone, L., While, L.: A Review of Multiobjective Test Problems and a Scalable Test Problem Toolkit. IEEE Transactions on Evolutionary Computation 10(5), 477–506 (2006)

    Article  MATH  Google Scholar 

  12. Igel, C., Hansen, N., Roth, S.: Covariance Matrix Adaptation for Multi-objective Optimization. Evolutionary Computation 15(1), 1–28 (2007)

    Article  Google Scholar 

  13. Lee, J., Hajela, P.: Parallel Genetic Algorithm Implementation in Multidisciplinary Rotor Blade Design. Journal of Aircraft 33(5), 962–969 (1996)

    Article  Google Scholar 

  14. Mezmaz, M., Melab, N., Talbi, E.-G.: Using the Multi-Start and Island Models for Parallel Multi-Objective Optimization on the Computational Grid. In: eScience, p. 112. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  15. Poloni, C.: Hybrid GA for Multi-Objective Aerodynamic Shape Optimization. In: Genetic Algorithms in Engineering and Computer Science, pp. 397–416. John Wiley & Sons, Chichester (1995)

    Google Scholar 

  16. Sawai, H., Adachi, S.: Effects of Hierarchical Migration in a Parallel Distributed Parameter-free GA. In: Congress on Evolutionary Computation (CEC 2000), Piscataway, NJ, pp. 1117–1124. IEEE Press, Los Alamitos (2000)

    Google Scholar 

  17. Stanley, T.J., Mudge, T.: A Parallel Genetic Algorithm for Multiobjective Microprocessor Design. In: International Conference on Genetic Algorithms, pp. 597–604. Morgan Kaufmann Publishers, San Francisco (1995)

    Google Scholar 

  18. Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello Coello, C.A.: Parallel Approaches for Multiobjective Optimization. In: Branke, J., others (eds.) Multiobjective Optimization: Interactive and Evolutionary Approaches, pp. 349–372. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Woehrle, M., Brockhoff, D., Hohm, T., Bleuler, S.: Investigating Coverage and Connectivity Trade-offs in Wireless Sensor Networks: The Benefits of MOEAs. TIK Report 294, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (October 2008); accepted for publication at MCDM 2008 conference

    Google Scholar 

  20. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  21. Zitzler, E., Thiele, L., Bader, J.: SPAM: Set Preference Algorithm for Multiobjective Optimization. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 847–858. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bader, J., Brockhoff, D., Welten, S., Zitzler, E. (2009). On Using Populations of Sets in Multiobjective Optimization. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, JK., Sevaux, M. (eds) Evolutionary Multi-Criterion Optimization. EMO 2009. Lecture Notes in Computer Science, vol 5467. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01020-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01020-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01019-4

  • Online ISBN: 978-3-642-01020-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics