Abstract
In multi-criterion optimization, Pareto-optimal solutions that appear very similar in the objective space may have very different pre-images. In many practical applications the decision makers, who select a solution or preferred region on the Pareto-front, may want to know different pre-images of the selected solutions. Especially, this will be the case when they would like to present alternative design candidates in later stages of a multidisciplinary design process.
In this paper we extend an existing CMA-ES niching framework, which has been previously applied successfully to multi-modal optimization, to the multi-criterion domain for boosting decision space diversity. At the same time, we introduce the concept of space aggregation for diversity maintenance in the aggregated spaces, i.e. search/decision and objective space. Empirical results on synthetic multi-modal bi-criteria test problems with known efficient sets and Pareto-fronts demonstrate that the diversity in the decision space can be significantly enhanced without hampering the convergence to a precise and diverse Pareto front approximation in the objective space of the original algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multiobjective Problems. Springer, Berlin (2007)
Deb, K., Tiwari, S.: Omni-optimizer: A Procedure for Single and Multi-objective Optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 47–61. Springer, Heidelberg (2005)
Rudolph, G., Naujoks, B., Preuss, M.: Capabilities of EMOA to Detect and Preserve Equivalent Pareto Subsets. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 36–50. Springer, Heidelberg (2007)
Nicolaou, C., Brown, N., Pattichis, C.: Molecular optimization using computational multi-objective methods. Current Opinion in Drug Discovery and Development 10, 316–324 (2007)
Kruisselbrink, J.W., Bäck, T., IJzerman, A.P., van der Horst, E.: Evolutionary algorithms for automated drug design towards target molecule properties. In: GECCO 2008: Proceedings of the 10th annual conference on Genetic and evolutionary computation, pp. 1555–1562. ACM, New York (2008)
Parmee, I.C., Cvetković, D., Watson, A.H., Bonham, C.R.: Multiobjective satisfaction within an interactive evolutionary design environment. ECJ 8(2), 197–222 (2000)
Schütze, O., Vasile, M., Coello, C.C.: Approximate solutions in space mission design. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 805–814. Springer, Heidelberg (2008)
Chan, K.P., Ray, T.: An Evolutionary Algorithm to Maintain Diversity in the Parametric and the Objective Space. In: International Conference on Computational Robotics and Autonomous Systems (CIRAS), Centre for Intelligent Control, National University of Singapore (2005) ISSN: 0219-6131
Toffolo, A., Benini, E.: Genetic Diversity as an Objective in Multi-Objective Evolutionary Algorithms. Evolutionary Computation 11(2), 151–167 (2003)
Preuss, M., Schönemann, L., Emmerich, M.: Counteracting genetic drift and disruptive recombination in (μ + /, λ)-EA on multimodal fitness landscapes. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 865–872. ACM Press, New York (2005)
Mahfoud, S.W.: Niching Methods for Genetic Algorithms. PhD thesis, University of Illinois at Urbana Champaign (1995)
Shir, O.M.: Niching in Derandomized Evolution Strategies and its Applications in Quantum Control. PhD thesis, Leiden University, The Netherlands (2008)
Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation 9(2), 159–195 (2001)
Shir, O.M., Bäck, T.: Niching with Derandomized Evolution Strategies in Artificial and Real-World Landscapes. Natural Computing: An International Journal (2008)
Igel, C., Hansen, N., Roth, S.: Covariance Matrix Adaptation for Multi-objective Optimization. Evolutionary Computation 15(1), 1–28 (2007)
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)
Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In: Conference on Evolutionary Computation (CEC), pp. 82–87. IEEE Service Center, Piscataway (1994)
Preuss, M., Naujoks, B., Rudolph, G.: Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective Functions. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 513–522. Springer, Heidelberg (2006)
Hansen, N., Kern, S.: Evaluating the CMA Evolution Strategy on Multimodal Test Functions. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 282–291. Springer, Heidelberg (2004)
Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)
Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)
Emmerich, M.: Single- and Multi-objective Evolutionary Design Optimization Assisted by Gaussian Random Field Metamodels. PhD thesis, University of Dortmund, Germany (2005)
Emmerich, M., Deutz, A.: Test problems based on lamé superspheres. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 922–936. Springer, Heidelberg (2007)
Preuss, M.: Reporting on Experiments in Evolutionary Computation. Technical Report CI-221/07, University of Dortmund, SFB 531 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shir, O.M., Preuss, M., Naujoks, B., Emmerich, M. (2009). Enhancing Decision Space Diversity in Evolutionary Multiobjective Algorithms. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, JK., Sevaux, M. (eds) Evolutionary Multi-Criterion Optimization. EMO 2009. Lecture Notes in Computer Science, vol 5467. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01020-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-01020-0_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01019-4
Online ISBN: 978-3-642-01020-0
eBook Packages: Computer ScienceComputer Science (R0)