Skip to main content

Enhancing Decision Space Diversity in Evolutionary Multiobjective Algorithms

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5467))

Included in the following conference series:

Abstract

In multi-criterion optimization, Pareto-optimal solutions that appear very similar in the objective space may have very different pre-images. In many practical applications the decision makers, who select a solution or preferred region on the Pareto-front, may want to know different pre-images of the selected solutions. Especially, this will be the case when they would like to present alternative design candidates in later stages of a multidisciplinary design process.

In this paper we extend an existing CMA-ES niching framework, which has been previously applied successfully to multi-modal optimization, to the multi-criterion domain for boosting decision space diversity. At the same time, we introduce the concept of space aggregation for diversity maintenance in the aggregated spaces, i.e. search/decision and objective space. Empirical results on synthetic multi-modal bi-criteria test problems with known efficient sets and Pareto-fronts demonstrate that the diversity in the decision space can be significantly enhanced without hampering the convergence to a precise and diverse Pareto front approximation in the objective space of the original algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multiobjective Problems. Springer, Berlin (2007)

    MATH  Google Scholar 

  2. Deb, K., Tiwari, S.: Omni-optimizer: A Procedure for Single and Multi-objective Optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 47–61. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Rudolph, G., Naujoks, B., Preuss, M.: Capabilities of EMOA to Detect and Preserve Equivalent Pareto Subsets. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 36–50. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Nicolaou, C., Brown, N., Pattichis, C.: Molecular optimization using computational multi-objective methods. Current Opinion in Drug Discovery and Development 10, 316–324 (2007)

    Google Scholar 

  5. Kruisselbrink, J.W., Bäck, T., IJzerman, A.P., van der Horst, E.: Evolutionary algorithms for automated drug design towards target molecule properties. In: GECCO 2008: Proceedings of the 10th annual conference on Genetic and evolutionary computation, pp. 1555–1562. ACM, New York (2008)

    Google Scholar 

  6. Parmee, I.C., Cvetković, D., Watson, A.H., Bonham, C.R.: Multiobjective satisfaction within an interactive evolutionary design environment. ECJ 8(2), 197–222 (2000)

    Google Scholar 

  7. Schütze, O., Vasile, M., Coello, C.C.: Approximate solutions in space mission design. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 805–814. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Chan, K.P., Ray, T.: An Evolutionary Algorithm to Maintain Diversity in the Parametric and the Objective Space. In: International Conference on Computational Robotics and Autonomous Systems (CIRAS), Centre for Intelligent Control, National University of Singapore (2005) ISSN: 0219-6131

    Google Scholar 

  9. Toffolo, A., Benini, E.: Genetic Diversity as an Objective in Multi-Objective Evolutionary Algorithms. Evolutionary Computation 11(2), 151–167 (2003)

    Article  Google Scholar 

  10. Preuss, M., Schönemann, L., Emmerich, M.: Counteracting genetic drift and disruptive recombination in (μ + /, λ)-EA on multimodal fitness landscapes. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 865–872. ACM Press, New York (2005)

    Google Scholar 

  11. Mahfoud, S.W.: Niching Methods for Genetic Algorithms. PhD thesis, University of Illinois at Urbana Champaign (1995)

    Google Scholar 

  12. Shir, O.M.: Niching in Derandomized Evolution Strategies and its Applications in Quantum Control. PhD thesis, Leiden University, The Netherlands (2008)

    Google Scholar 

  13. Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation 9(2), 159–195 (2001)

    Article  Google Scholar 

  14. Shir, O.M., Bäck, T.: Niching with Derandomized Evolution Strategies in Artificial and Real-World Landscapes. Natural Computing: An International Journal (2008)

    Google Scholar 

  15. Igel, C., Hansen, N., Roth, S.: Covariance Matrix Adaptation for Multi-objective Optimization. Evolutionary Computation 15(1), 1–28 (2007)

    Article  Google Scholar 

  16. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)

    MATH  Google Scholar 

  17. Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In: Conference on Evolutionary Computation (CEC), pp. 82–87. IEEE Service Center, Piscataway (1994)

    Google Scholar 

  18. Preuss, M., Naujoks, B., Rudolph, G.: Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective Functions. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 513–522. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Hansen, N., Kern, S.: Evaluating the CMA Evolution Strategy on Multimodal Test Functions. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 282–291. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  21. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Emmerich, M.: Single- and Multi-objective Evolutionary Design Optimization Assisted by Gaussian Random Field Metamodels. PhD thesis, University of Dortmund, Germany (2005)

    Google Scholar 

  23. Emmerich, M., Deutz, A.: Test problems based on lamé superspheres. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 922–936. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Preuss, M.: Reporting on Experiments in Evolutionary Computation. Technical Report CI-221/07, University of Dortmund, SFB 531 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shir, O.M., Preuss, M., Naujoks, B., Emmerich, M. (2009). Enhancing Decision Space Diversity in Evolutionary Multiobjective Algorithms. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, JK., Sevaux, M. (eds) Evolutionary Multi-Criterion Optimization. EMO 2009. Lecture Notes in Computer Science, vol 5467. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01020-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01020-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01019-4

  • Online ISBN: 978-3-642-01020-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics