Advertisement

A Series of Run-Rich Strings

  • Wataru Matsubara
  • Kazuhiko Kusano
  • Hideo Bannai
  • Ayumi Shinohara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5457)

Abstract

We present a new series of run-rich strings, and give a new lower bound 0.94457567 of the maximum number of runs in a string. We also introduce the general conjecture about a asymptotic behavior of the numbers of runs in the strings defined by any recurrence formula, and show the lower bound can be improved further to 0.94457571235.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Proc. 40th Annual Symposium on Foundations of Computer Science (FOCS 1999), pp. 596–604 (1999)Google Scholar
  2. 2.
    Rytter, W.: The number of runs in a string: Improved analysis of the linear upper bound. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 184–195. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Rytter, W.: The number of runs in a string. Inf. Comput. 205(9), 1459–1469 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Puglisi, S.J., Simpson, J., Smyth, W.F.: How many runs can a string contain? Theoretical Computer Science 401(1–3), 165–171 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Crochemore, M., Ilie, L.: Maximal repetitions in strings. J. Comput. Syst. Sci. 74, 796–807 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Baturo, P., Piatkowski, M., Rytter, W.: The number of runs in Sturmian words. In: Ibarra, O., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 252–261. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Giraud, M.: Not so many runs in strings. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 245–252. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Crochemore, M., Ilie, L., Tinta, L.: Towards a solution to the “Runs” conjecture. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 290–302. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Franěk, F., Yang, Q.: An asymptotic lower bound for the maximal-number-of-runs function. In: Proc. Prague Stringology Conference (PSC 2006), pp. 3–8 (2006)Google Scholar
  10. 10.
    Franěk, F., Simpson, R., Smyth, W.: The maximum number of runs in a string. In: Proc. 14th Australasian Workshop on Combinatorial Algorithms (AWOCA 2003), pp. 26–35 (2003)Google Scholar
  11. 11.
    Matsubara, W., Kusano, K., Ishino, A., Bannai, H., Shinohara, A.: New lower bounds for the maximum number of runs in a string. In: Proc. The Prague Stringology Conference 2008, pp. 140–145 (2008)Google Scholar
  12. 12.
    Crochemore, M., Ilie, L., Smyth, W.F.: A simple algorithm for computing the lempel ziv factorization. In: Proc. DCC 2008, pp. 482–488 (2008)Google Scholar
  13. 13.
    Graham, R., Knuth, D., Patashnik, O.: Concrete mathematics, 2nd edn. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Wataru Matsubara
    • 1
  • Kazuhiko Kusano
    • 1
  • Hideo Bannai
    • 2
  • Ayumi Shinohara
    • 1
  1. 1.Graduate School of Information ScienceTohoku UniversitySendaiJapan
  2. 2.Department of InformaticsKyushu UniversityFukuokaJapan

Personalised recommendations