Advertisement

Automata on Gauss Words

  • Alexei Lisitsa
  • Igor Potapov
  • Rafiq Saleh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5457)

Abstract

In this paper we investigate the computational complexity of knot theoretic problems and show upper and lower bounds for planarity problem of signed and unsigned knot diagrams represented by Gauss words. Due to the fact the number of crossing in knots is unbounded, the Gauss words of knot diagrams are strings over infinite (unbounded) alphabet. For establishing the lower and upper bounds on recognition of knot properties we study these problems in a context of automata models over infinite alphabet.

Keywords

Paired Word Euler Characteristic Jones Polynomial Input Word Data Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kari, J., Niemi, V.: Morphic Images of Gauss Codes. In: Developments in Language Theory, pp. 144–156 (1993)Google Scholar
  2. 2.
    Abramsky, S.: Temperley-Lieb Algebra: From Knot Theory to Logic and Computation via Quantum Mechanics. Mathematics of Quantum Computation and Quantum Technology (2007)Google Scholar
  3. 3.
    Freivalds, R.: Knot Theory, Jones Polynomial and Quantum Computing. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 15–25. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Lomonaco Jr., S., Kauffman, L.: Topological Quantum Computing and the Jones Polynomial. Arxiv Preprint Quant-ph/ 0605004 (2006)Google Scholar
  5. 5.
    Hass, J., Lagarias, J., Pippenger, N.: The computational complexity of knot and link problems. Journal of the ACM (JACM) 46(2), 185–211 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kaminski, M., Francez, N.: Finite-memory automata. In: Proceedings of 31st Annual Symposium on Foundations of Computer Science, pp. 683–688 (1990)Google Scholar
  7. 7.
    Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets. ACM Transactions on Computational Logic (TOCL) 5(3), 403–435 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kurlin, V.: Gauss phrases realizable by classical links. Arxiv Preprint Math. GT/ 0610929 (2006)Google Scholar
  9. 9.
    David, C.: Mots et données infinies. Master’s thesis, LIAFA (2004)Google Scholar
  10. 10.
    Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. In: LICS, vol. 6, pp. 17–26 (2006)Google Scholar
  11. 11.
    Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. Journal of Computer and System Sciences 66(1), 66–97 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bjorklund, H., Schwentick, T.: On Notions of Regularity for Data Languages. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 88–99. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Kauffman, L.: Virtual knot theory. Arxiv Preprint Math. GT/ 9811028 (1998)Google Scholar
  14. 14.
    Cairns, G., Elton, D.: The planarity problem for signed Gauss words. Journal of Knot Theory and its Ramifications 2(4), 359–367 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cairns, G., Elton, D.: The Planarity Problem II. Journal of Knot Theory and its Ramifications 5, 137–144 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Carter, J.: Classifying immersed curves. Proc. Amer. Math. Soc. 111, 281–287 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alexei Lisitsa
    • 1
  • Igor Potapov
    • 1
  • Rafiq Saleh
    • 1
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations