Skip to main content

Membership Testing: Removing Extra Stacks from Multi-stack Pushdown Automata

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 5457)

Abstract

We show that fixed membership testing for many interesting subclasses of multi-pushdown machines is no harder than for pushdowns with single stack. The models we consider are MVPA, OVPA and MPDA, which have all been defined and studied in the past.

Multi-stack pushdown automata, MPDA, have ordered stacks with pop access restricted to the stack-top of the first non-empty stack. The membership for MPDAs is known to be in NSPACE(n) and in P. We show that the P-time algorithm can be implemented in the complexity class LogCFL; thus membership for MPDAs is LogCFL-complete.

It follows that membership testing for ordered visibly pushdown automata OVPA is also in LogCFL.

The membership problem for multi-stack visibly pushdown automata, MVPA, is known to be NP-complete. However, many applications focus on MVPA with O(1) phases. We show that for MVPA with O(1) phases, membership reduces to that in MPDAs, and so is in LogCFL.

Keywords

  • Table Entry
  • Input String
  • Proof Tree
  • Membership Problem
  • Sentential Form

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-00982-2_42
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-00982-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hopcroft, A., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (2001)

    MATH  Google Scholar 

  2. Sudborough, I.H.: On the tape complexity of deterministic context-free language. Journal of Association of Computing Machinery 25(3), 405–414 (1978)

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. Sudborough, I.H.: A note on tape-bounded complexity classes and linear context-free languages. Journal of Association of Computing Machinery 22, 499–500 (1975)

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. Holzer, M., Lange, K.J.: On the complexities of linear LL(1) and LR(1) grammars. In: 9th International Symposium on Fundamentals of Computation Theory FCT, London, UK, pp. 299–308. Springer, Heidelberg (1993)

    CrossRef  Google Scholar 

  5. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: 36th ACM Symposium on Theory of Computing (STOC 2004), pp. 202–211 (2004)

    Google Scholar 

  6. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL recognition. In: 7th International Colloquium on Automata, Languages and Programming, pp. 422–432 (1980)

    Google Scholar 

  7. Dymond, P.W.: Input-driven languages are in logn depth. Information Processing Letters 26, 247–250 (1988)

    MathSciNet  CrossRef  Google Scholar 

  8. Carotenuto, D., Murano, A., Peron, A.: 2-visibly pushdown automata. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 132–144. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  9. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive languages. In: 22nd Symposium on Logic in Computer Science, pp. 161–170 (2007)

    Google Scholar 

  10. Cherubini, A., Breveglieri, L., Citrini, C., Crespi Reghizzi, S.: Multipushdown languages and grammars. International Journal of Foundations of Computer Science 7(3), 253–292 (1996)

    CrossRef  MATH  Google Scholar 

  11. Cherubini, A., Pietro, P.S.: A polynomial-time parsing algorithm for a class of non-deterministic two-stack automata. In: 4th Italian Conference on Theoretical Computer Science, pp. 150–164 (1992)

    Google Scholar 

  12. Cherubini, A., Pietro, P.S.: A polynomial-time parsing algorithm for k-depth languages. Journal of Computer and System Sciences 52(1), 61–79 (1996)

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. Allender, E., Jiao, J., Mahajan, M., Vinay, V.: Non-commutative arithmetic circuits: depth reduction and size lower bounds. Theoretical Computer Science 209, 47–86 (1998)

    MathSciNet  CrossRef  MATH  Google Scholar 

  14. Ruzzo, W.: Tree-size bounded alternation. Journal of Computer and System Sciences 21, 218–235 (1980)

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, New York (1999)

    CrossRef  MATH  Google Scholar 

  16. Barrington, D.: Bounded-width polynomial size branching programs recognize exactly those languages in NC1. Journal of Computer and System Sciences 38, 150–164 (1989)

    MathSciNet  CrossRef  MATH  Google Scholar 

  17. Pietro, P.S.: Two-stack automata. Rapporto Interno n. 92-073, Dipartimento Di Elettronica e Informazione, Politecnico di Milano, Milano (October 1992), http://home.dei.polimi.it/sanpietr/pubs/twostack92.ZIP

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Limaye, N., Mahajan, M. (2009). Membership Testing: Removing Extra Stacks from Multi-stack Pushdown Automata. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds) Language and Automata Theory and Applications. LATA 2009. Lecture Notes in Computer Science, vol 5457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00982-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00982-2_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00981-5

  • Online ISBN: 978-3-642-00982-2

  • eBook Packages: Computer ScienceComputer Science (R0)