Bounded Hairpin Completion

  • Masami Ito
  • Peter Leupold
  • Victor Mitrana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5457)


We consider a restricted variant of the hairpin completion called bounded hairpin completion. The hairpin completion is a formal operation inspired from biochemistry. Applied to a word encoding a single stranded molecule x such that either a suffix or a prefix of x is complementary to a subword of x, hairpin completion produces a new word z, which is a prolongation of x to the right or to the left by annealing.

The restriction considered here concerns the length of all prefixes and suffixes that are added to the current word by hairpin completion. They cannot be longer than a given constant. Closure properties of some classes of formal languages under the non-iterated and iterated bounded hairpin completion are investigated. We also define the inverse operation, namely bounded hairpin reduction, and consider the set of all primitive bounded hairpin roots of a regular language.


Formal Language Regular Language Closure Property Inverse Operation Circular Permutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, B.S.: Context-sensitive grammars generating context-free languages. In: Automata, Languages and Programming ICALP 1972, pp. 501–506. North-Holland, Amsterdam (1972)Google Scholar
  2. 2.
    Book, R., Otto, F.: String-Rewriting Systems. Springer, Heidelberg (1993)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bottoni, P., Labella, A., Manca, V., Mitrana, V.: Superposition based on Watson-Crick-like complementarity. Theory of Computing Systems 39, 503–524 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cheptea, D., Martín-Vide, C., Mitrana, V.: A new operation on words suggested by DNA biochemistry: hairpin completion. In: Transgressive Computing, pp. 216–228 (2006)Google Scholar
  5. 5.
    Deaton, R., Murphy, R., Garzon, M., Franceschetti, D.R., Stevens, S.E.: Good encodings for DNA-based solutions to combinatorial problems. In: Proc. of DNA-based computers II. DIMACS Series, vol. 44, pp. 247–258 (1998)Google Scholar
  6. 6.
    Garzon, M., Deaton, R., Neathery, P., Murphy, R.C., Franceschetti, D.R., Stevens, S.E.: On the encoding problem for DNA computing. In: The Third DIMACS Workshop on DNA-Based Computing, pp. 230–237. Univ. of Pennsylvania (1997)Google Scholar
  7. 7.
    Garzon, M., Deaton, R., Nino, L.F., Stevens, S.E., Wittner, M.: Genome encoding for DNA computing. In: Proc. Third Genetic Programming Conference, Madison, MI, pp. 684–690 (1998)Google Scholar
  8. 8.
    Hofbauer, D., Waldmann, J.: Deleting string-rewriting systems preserve regularity. Theoretical Computer Science 327, 301–317 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Information and Computation 131, 47–61 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kari, L., Konstantinidis, S., Sosík, P., Thierrin, G.: On hairpin-free words and languages. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 296–307. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Manea, F., Martín-Vide, C., Mitrana, V.: On some algorithmic problems regarding the hairpin completion. Discrete Applied Mathematics (in press), doi:10.1016/j.dam.2007.09.022Google Scholar
  12. 12.
    Manea, F., Mitrana, V.: Hairpin completion versus hairpin reduction. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 532–541. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Manea, F., Mitrana, V., Yokomori, T.: Two complementary operations inspired by the DNA hairpin formation: completion and reduction. Theoretical Computer Science (in press), doi:10.1016/j.tcs.2008.09.049Google Scholar
  14. 14.
    Manea, F., Mitrana, V., Yokomori, T.: Some remarks on the hairpin completion. In: Proc. 12th International Conference on Automata and Formal Languages, pp. 302–313 (2008)Google Scholar
  15. 15.
    Marcus, S.: Contextual grammars. Rev. Roum. Math. Pures Appl. 14, 1525–1534 (1969)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  17. 17.
    Ruohonen, K.: On circular words and (ω * + ω)-powers of words. Elektr. Inform. und Kybern. E.I.K. 13, 3–12 (1977)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T., Hagiya, M.: Molecular computation by DNA hairpin formation. Science 288, 1223–1226 (2000)CrossRefGoogle Scholar
  19. 19.
    Salomaa, A.: Formal Languages. Academic Press, London (1973)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Masami Ito
    • 1
  • Peter Leupold
    • 1
  • Victor Mitrana
    • 2
    • 3
  1. 1.Department of Mathematics, Faculty of ScienceKyoto Sangyo UniversityKyotoJapan
  2. 2.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania
  3. 3.Department of Information Systems and ComputationTechnical University of ValenciaValenciaSpain

Personalised recommendations