Advertisement

State Complexity of Combined Operations for Prefix-Free Regular Languages

  • Yo-Sub Han
  • Kai Salomaa
  • Sheng Yu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5457)

Abstract

We investigate the state complexity of combined operations for prefix-free regular languages. Prefix-free minimal deterministic finite-state automata have a unique structural property that plays an important role to obtain the precise state complexity of basic operations. Based on the same property, we establish the precise state complexity of four combined operations: star-of-union, star-of-intersection, star-of-reversal and star-of-catenation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Friedl, J.E.F.: Mastering Regular Expressions. O’Reilly & Associates, Inc., Sebastopol (2002)zbMATHGoogle Scholar
  2. 2.
    Harel, D., Politi, M.: Modeling Reactive Systems with Statecharts: The Statemate Approach. McGraw-Hill, New York (1998)Google Scholar
  3. 3.
    Karttunen, L.: Applications of finite-state transducers in natural language processing. In: Yu, S., Păun, A. (eds.) CIAA 2000. LNCS, vol. 2088, pp. 34–46. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoretical Computer Science 125(2), 315–328 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Yu, S.: State complexity of regular languages. Journal of Automata, Languages and Combinatorics 6(2), 221–234 (2001)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Salomaa, A., Wood, D., Yu, S.: On the state complexity of reversals of regular languages. Theoretical Computer Science 320(2-3), 315–329 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Câmpeanu, C., Culik II, K., Salomaa, K., Yu, S.: State complexity of basic operations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Han, Y.S., Salomaa, K.: State complexity of union and intersection of finite languages. International Journal of Foundations of Computer Science 19(3), 581–595 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function. International Journal of Foundations of Computer Science 13(1), 145–159 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. International Journal of Foundations of Computer Science 14(6), 1087–1102 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Han, Y.S., Salomaa, K., Wood, D.: State complexity of prefix-free regular languages. In: Proceedings of DCFS 2006, pp. 165–176 (2006); Full version is submitted for publicationGoogle Scholar
  12. 12.
    Han, Y.S., Salomaa, K.: State complexity of basic operations on suffix-free regular languages. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 501–512. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Câmpeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity of shuffle of regular languages. Journal of Automata, Languages and Combinatorics 7(3), 303–310 (2002)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Domaratzki, M.: State complexity of proportional removals. Journal of Automata, Languages and Combinatorics 7(4), 455–468 (2002)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Domaratzki, M., Salomaa, K.: State complexity of shuffle on trajectories. Journal of Automata, Languages and Combinatorics 9(2-3), 217–232 (2004)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular languages and descriptional complexity. In: Proceedings of DCFS 2005, pp. 170–181 (2005)Google Scholar
  17. 17.
    Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and complementation of regular languages. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 178–189. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Nicaud, C.: Average state complexity of operations on unary automata. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 231–240. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations: Star of catenation and star of reversal. Fundamenta Informaticae 83(1-2), 75–89 (2008)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. Theoretical Computer Science 383(2-3), 140–152 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Salomaa, K., Yu, S.: On the state complexity of combined operations and their estimation. International Journal of Foundations of Computer Science 18, 683–698 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Berstel, J., Perrin, D.: Theory of Codes. Academic Press, Inc., London (1985)zbMATHGoogle Scholar
  23. 23.
    Wood, D.: Theory of Computation. John Wiley & Sons, Inc., New York (1987)zbMATHGoogle Scholar
  24. 24.
    Leiss, E.L.: Succinct representation of regular languages by boolean automata. Theoretical Computer Science 13, 323–330 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ellul, K., Krawetz, B., Shallit, J., Wang, M.W.: Regular expressions: New results and open problems. Journal of Automata, Languages and Combinatorics 9, 233–256 (2004)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Rampersad, N.: The state complexity of L 2 and L k. Information Processing Letters 98(6), 231–234 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yo-Sub Han
    • 1
  • Kai Salomaa
    • 2
  • Sheng Yu
    • 3
  1. 1.Intelligence and Interaction Research CenterKISTCheongryang, SeoulKorea
  2. 2.School of ComputingQueen’s UniversityKingstonCanada
  3. 3.Department of Computer ScienceUniversity of Western OntarioLondonCanada

Personalised recommendations