Learning by Erasing in Dynamic Epistemic Logic

  • Nina Gierasimczuk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5457)


This work provides a comparison of learning by erasing [1] and iterated epistemic update [2] as analyzed in dynamic epistemic logic (see e.g.[3]). We show that finite identification can be modelled in dynamic epistemic logic and that the elimination process of learning by erasing can be seen as iterated belief-revision modelled in dynamic doxastic logic.


Actual World Turing Machine Epistemic State Inductive Inference Indistinguishability Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lange, S., Wiehagen, R., Zeugmann, T.: Learning by erasing. In: Arikawa, S., Sharma, A.K. (eds.) ALT 1996. LNCS (LNAI), vol. 1160, pp. 228–241. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. 2.
    Baltag, A., Moss, L.: Logics for epistemic programs. Synthese 139(2), 165–224 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer, Heidelberg (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems that Learn. MIT Press, Cambridge (1999)Google Scholar
  5. 5.
    Gold, E.: Language identification in the limit. Information and Control 10, 447–474 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Tiede, H.J.: Identifiability in the limit of context-free generalized quantifiers. Journal of Language and Computation 1, 93–102 (1999)Google Scholar
  7. 7.
    Costa Florêntio, C.: Learning generalized quantifiers. In: Proc. 7th ESSLLI Student Session (2002)Google Scholar
  8. 8.
    Gierasimczuk, N.: The problem of learning the semantics of quantifiers. In: ten Cate, B.D., Zeevat, H.W. (eds.) TbiLLC 2005. LNCS (LNAI), vol. 4363, pp. 117–126. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Kelly, K.: The Logic of Reliable Inquiry. Oxford University Press, Oxford (1996)zbMATHGoogle Scholar
  10. 10.
    Osherson, D., de Jongh, D., Martin, E., Weinstein, S.: Formal learning theory. In: van Benthem, J., Ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 737–775. MIT Press, Cambridge (1997)CrossRefGoogle Scholar
  11. 11.
    Martin, E., Osherson, D.: Elements of Scientific Inquiry. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  12. 12.
    Hintikka, J.: Knowledge and Belief. An Introduction to the Logic of the Two Notions. Cornell University Press (1962)Google Scholar
  13. 13.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. The Journal of Symbolic Logic 50(2), 510–530 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Freivalds, R., Zeugmann, T.: Co–learning of recursive languages from positive data. In: Bjorner, D., Broy, M., Pottosin, I.V. (eds.) PSI 1996. LNCS, vol. 1181, pp. 122–133. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  15. 15.
    van Benthem, J., Gerbrandy, J., Pacuit, E.: Merging frameworks for interaction: DEL and ETL. In: Proc. TARK 2007, pp. 72–81 (2007)Google Scholar
  16. 16.
    Batlag, A., Moss, L.S., Solecki, S.: The logic of public announcements and common knowledge and private suspicions. In: Proc. TARK 1998, pp. 43–56 (1998)Google Scholar
  17. 17.
    Freivalds, R., Karpinski, M., Smith, C., Wiehagen, R.: Learning by the process of elimination. Information and Computation 176(1), 37–50 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gierasimczuk, N.: Identification through inductive verification. Application to monotone quantifiers. In: Bosch, P., Gabelaia, D., Lang, J. (eds.) TbiLLC 2007. LNCS, vol. 5422, pp. 193–205. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nina Gierasimczuk
    • 1
    • 2
  1. 1.Institute for Logic, Language, and ComputationUniversity of AmsterdamThe Netherlands
  2. 2.Institute of PhilosophyUniversity of WarsawPoland

Personalised recommendations