Advertisement

Descriptional and Computational Complexity of Finite Automata

  • Markus Holzer
  • Martin Kutrib
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5457)

Abstract

Over the last half century, a vast literature documenting the importance of deterministic, nondeterministic, and alternating finite automata as an enormously valuable concept has been developed. In the present paper, we tour a fragment of this literature. Mostly, we discuss developments relevant to finite automata related problems like, for example, (i) simulation of and by several types of finite automata, (ii) standard automata problems such as, e.g., fixed and general membership, emptiness, universality, equivalence, and related problems, and (iii) minimization and approximation. We thus come across descriptional and computational complexity issues of finite automata. We do not prove these results but we merely draw attention to the big picture and some of the main ideas involved.

Keywords

Minimization Problem Regular Expression Regular Language Finite Automaton Membership Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addision-Wesley, Reading (1974)zbMATHGoogle Scholar
  2. 2.
    Álvarez, C., Jenner, B.: A very hard log-space counting class. Theoret. Comput. Sci. 107, 3–30 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ajtai, M.: \(\Sigma_1^1\) formulae on finite structures. Ann. Pure. Appl. Logic 24, 1–48 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Anderson, T., Rampersad, N., Santean, N., Shallit, J., Loftus, J.: Detecting palindroms, patterns and borders in regular languages (2008) arXiv:0711.3183v2 [cs.CC]Google Scholar
  5. 5.
    Barrington, D.A.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comput. System Sci. 38, 150–164 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within \(\mbox{NC}^1\). J. Comput. System Sci. 41, 274–306 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Barrington, D.M., Thérien, D.: Finite monoids and the fine structure of \(\mbox{NC}^1\). J. ACM 35, 941–952 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Björklund, H., Martens, W.: The tractability frontier for NFA minimization. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 27–38. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Brzozowski, J.A., Leiss, E.L.: On equations for regular languages, finite automata, and sequential networks. Theoret. Comput. Sci. 10, 19–35 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. ACM 21, 114–133 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cho, S., Huynh, D.T.: Finite-automaton aperiodicity is PSPACE-complete. Theoret. Comput. Sci. 88, 99–116 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cho, S., Huynh, D.T.: The parallel complexity of finite-state automata problems. Inform. Comput. 97, 1–22 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47, 149–158 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chrobak, M.: Errata to finite automata and unary languages. Theoret. Comput. Sci. 302, 497–498 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Cohen, R.S., Brzozowski, J.A.: Dot-depth of star-free events. J. Comput. System Sci. 5, 1–16 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Eilenberg, S.: Automata, Languages, and Machines (Volume B), vol. 59-B. Academic Press, London (1976)zbMATHGoogle Scholar
  17. 17.
    Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata. Internat. J. Comput. Math. 35, 117–132 (1990)CrossRefzbMATHGoogle Scholar
  18. 18.
    Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math. Systems Theory 17, 13–27 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Galil, Z.: Hierarchies of complete problems. Acta Inform. 6, 77–88 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  21. 21.
    Gold, E.M.: Complexity of automaton identification from given data. Inform. Control 37, 302–320 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gramlich, G.: Probabilistic and nondeterministic unary automata. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 460–469. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Gramlich, G., Schnitger, G.: Minimizing nFA’s and regular expressions. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 399–411. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Gruber, H., Holzer, M.: Finding lower bounds for nondeterministic state complexity is hard. In: H. Ibarra, O., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 363–374. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Gruber, H., Holzer, M.: Computational complexity of NFA minimization for finite and unary languages. In: Language and Automata Theory and Applications (LATA 2007), pp. 261–272. Technical Report 35/07, Universitat Rovira i Virgili, Tarragona (2007)Google Scholar
  26. 26.
    Gruber, H., Holzer, M.: Inapproximability of nondeterministic state and transition complexity assuming \(\mbox{P}\neq\mbox{NP}\). In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 205–216. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Hartmanis, J., Hunt III, H.B.: The LBA problem and its importance in the theory of computing. In: SIAM AMS. Complexity of Computing, vol. 7, pp. 1–26 (1974)Google Scholar
  28. 28.
    Holzer, M.: On emptiness and counting for alternating finite automata. In: Developments in Language Theory II; at the Crossroads of Mathematics, Computer Science and Biology, pp. 88–97. World Scientific, Singapore (1996)Google Scholar
  29. 29.
    Holzer, M., Kutrib, M.: State complexity of basic operations on nondeterministic finite automata. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 148–157. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  30. 30.
    Holzer, M., Kutrib, M.: Nondeterministic finite automata—recent results on the descriptional and computational complexity. In: Ibarra, O., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 1–16. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Holzer, M., Salomaa, K., Yu, S.: On the state complexity of k-entry deterministic finite automata. J. Autom., Lang. Comb. 6, 453–466 (2001)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Hopcroft, J.: An nlogn algorithm for minimizing the state in a finite automaton. In: The Theory of Machines and Computations, pp. 189–196. Academic Press, London (1971)CrossRefGoogle Scholar
  33. 33.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  34. 34.
    Hunt III, H.B.: On the time and tape complexity of languages. Ph.D. thesis, Cornell University, Ithaca, New York, USA (1973)Google Scholar
  35. 35.
    Hunt III, H.B.: On the time and tape complexity of languages I. In: Symposium on Theory of Computing (STOC 1973), pp. 10–19. ACM Press, New York (1973)Google Scholar
  36. 36.
    Hunt III, H.B.: Observations on the complexity of regular expressions problems. J. Comput. System Sci. 19, 222–236 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Hunt III, H.B., Rosenkrantz, D.J.: On equivalence and contaiment problems for formal languages. J. ACM 24, 387–396 (1977)CrossRefzbMATHGoogle Scholar
  38. 38.
    Hunt III, H.B., Rosenkrantz, D.J.: Computational parallels between the regular and context-free languages. SIAM J. Comput. 7, 99–114 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Hunt III, H.B., Rosenkrantz, D.J., Szymanski, T.G.: On the equivalence, containment, and covering problems for the regular and context-free languages. J. Comput. System Sci. 12, 222–268 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Huynh, D.T.: Complexity of closeness, sparseness and segment equivalence for context-free and regular languages. In: Informatik, Festschrift zum 60, Geburtstag von Günter Hotz, Teubner, pp. 235–251 (1992)Google Scholar
  41. 41.
    Ibarra, O.H., Ravikumar, B.: On sparseness, ambiguity and other decision problems for acceptors and transducers. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 1986. LNCS, vol. 210, pp. 171–179. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  42. 42.
    Ilie, L., Yu, S.: Follow automata. Inform. Comput. 186, 140–162 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Immerman, N.: Nondeterministic space is closed under complementation. SIAM J. Comput. 17, 935–938 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal NFAs over a unary alphabet. Internat. J. Found. Comput. Sci. 2, 163–182 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Jiang, T., Ravikumar, B.: A note on the space complexity of some decision problems for finite automata. Inform. Process. Lett. 40, 25–31 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput. 22, 1117–1141 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Jones, N.: Space-bounded reducibility among combinatorial problems. J. Comput. System Sci. 11, 68–85 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Kozen, D.: Lower bounds for natural proof systems. In: Foundations of Computer Science (FOCS 1977), pp. 254–266. IEEE Society Press, Los Alamitos (1977)Google Scholar
  49. 49.
    Lange, K.J., Rossmanith, P.: The emptiness problem for intersections of regular languages. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629, pp. 346–354. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  50. 50.
    Leiss, E.: Succinct representation of regular languages by Boolean automata. Theoret. Comput. Sci. 13, 323–330 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Leiss, E.: Succinct representation of regular languages by Boolean automata. II. Theoret. Comput. Sci. 38, 133–136 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Malcher, A.: Minimizing finite automata is computationally hard. Theoret. Comput. Sci. 327, 375–390 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    McKenzie, P., Péladeau, P., Thérien, D.: \(\mbox{NC}^1\): The automata-theoretical viewpoint. Comput. Compl. 1, 330–359 (1991)CrossRefzbMATHGoogle Scholar
  54. 54.
    McNaughton, R., Papert, S.: Counter-free automata. Research monographs, vol. 65. MIT Press, Cambridge (1971)zbMATHGoogle Scholar
  55. 55.
    Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata. SIAM J. Comput. 30, 1976–1992 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: IEEE Symposium on Switching and Automata Theory (SWAT 1971), pp. 188–191. IEEE Society Press, Los Alamitos (1971)CrossRefGoogle Scholar
  57. 57.
    Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential time. In: Symposium on Switching and Automata Theory (SWAT 1972), pp. 125–129. IEEE Society Press, Los Alamitos (1972)CrossRefGoogle Scholar
  58. 58.
    Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput. 20, 1211–1214 (1971)CrossRefzbMATHGoogle Scholar
  59. 59.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 114–125 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inform. Control 8, 190–194 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Sipser, M.: Lower bounds on the size of sweeping automata. J. Comput. System Sci. 21, 195–202 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Stearns, R.E., Hunt, H.B.: On the equivalence and containment problems for unambiguous regular expressions, regular grammars, and finite automata. SIAM J. Comput. 14, 598–611 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Stern, J.: Complexity of some problems from the theory of automata. Inform. Control 66, 163–176 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Stockmeyer, L.J.: The Complexity of Decision Problems in Automata Theory and Logic. Ph.D. thesis, MIT, Cambridge, Massasuchets, USA (1974)Google Scholar
  65. 65.
    Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Symposium on Theory of Computing (STOC 1973), pp. 1–9. ACM Press, New York (1973)Google Scholar
  66. 66.
    Szelepcsényi, R.: The method of forced enumeration for nondeterministic automata. Acta Inform. 26, 279–284 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Thérien, D.: Classification of finite monoids: the language approach. Theoret. Comput. Sci. 14, 195–208 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Yu, S.: State complexity of regular languages. J. Autom., Lang. Comb. 6, 221–234 (2001)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Markus Holzer
    • 1
  • Martin Kutrib
    • 1
  1. 1.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations