Nondeterministic Instance Complexity and Proof Systems with Advice

  • Olaf Beyersdorff
  • Johannes Köbler
  • Sebastian Müller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5457)


Motivated by strong Karp-Lipton collapse results in bounded arithmetic, Cook and Krajíček [1] have recently introduced the notion of propositional proof systems with advice. In this paper we investigate the following question: Given a language L , do there exist polynomially bounded proof systems with advice for L ? Depending on the complexity of the underlying language L and the amount and type of the advice used by the proof system, we obtain different characterizations for this problem. In particular, we show that the above question is tightly linked with the question whether L has small nondeterministic instance complexity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cook, S.A., Krajíček, J.: Consequences of the provability of \(\mathit{NP} \subseteq P/\mathit{poly}\). The Journal of Symbolic Logic 72(4), 1353–1371 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beyersdorff, O., Müller, S.: A tight Karp-Lipton collapse result in bounded arithmetic. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 199–214. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Orponen, P., Ko, K., Schöning, U., Watanabe, O.: Instance complexity. Journal of the ACM 41(1), 96–121 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arvind, V., Köbler, J., Mundhenk, M., Torán, J.: Nondeterministic instance complexity and hard-to-prove tautologies. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 314–323. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform complexity classes. In: Proc. 12th ACM Symposium on Theory of Computing, pp. 302–309. ACM Press, New York (1980)Google Scholar
  6. 6.
    Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44(1), 36–50 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Krajíček, J., Pudlák, P.: Propositional proof systems, the consistency of first order theories and the complexity of computations. The Journal of Symbolic Logic 54(3), 1063–1079 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Buhrman, H., Fortnow, L., Laplante, S.: Resource-bounded Kolmogorov complexity revisited. SIAM Journal on Computing 31(3), 887–905 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Buhrman, H., Chang, R., Fortnow, L.: One bit of advice. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 547–558. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Cai, J.Y., Chakaravarthy, V.T., Hemaspaandra, L.A., Ogihara, M.: Competing provers yield improved Karp-Lipton collapse results. Information and Computation 198(1), 1–23 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Olaf Beyersdorff
    • 1
  • Johannes Köbler
    • 2
  • Sebastian Müller
    • 2
  1. 1.Institut für Theoretische InformatikLeibniz-Universität HannoverGermany
  2. 2.Institut für InformatikHumboldt-Universität zu BerlinGermany

Personalised recommendations