Skip to main content

Concrete Nanoscience and Nanotechnology: Definitions and Applications

  • Conference paper

Abstract

There are many improvements needed in concrete, especially for use in renewal and expansion of the world’s infrastructure. Nanomodification can help solve many of these problems. However, concrete has been slow to catch on to the nanotechnology revolution. There are several reasons for this lag in the nanoscience and nanotechnology of concrete (NNC). First is the lack of a complete basic understanding of chemical and physical mechanisms and structure at the nanometer length scale. Another reason is the lack of a broad understanding of what nanomodification means to concrete, which is a liquid-solid composite. NNC ideas need to profit from, but not be bound by, experience with other materials. As an illustration of these ideas, a specific application will be given of using nano-size molecules in solution to affect the viscosity of the concrete pore solution so that ionic diffusion is slowed. A molecular-based understanding would help move this project towards true nanotechnology. A final section of this paper lists some possibly fruitful focus areas for the nanoscience and nanotechnology of concrete.

Keywords

  • Calcium Silicate
  • Pore Solution
  • Calcium Silicate Hydrate
  • Cement Concrete
  • Chemical Admixture

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sobolev, K., Gutiérrez, M.F.: How nanotechnology can change the concrete world. Am. Ceram. Soc. Bull. 84, 14–18, 16–20 (2005)

    Google Scholar 

  2. Sobolev, K., Shah, S.P., ACI Committee (eds.): SP-254 Nanotechnology of Concrete: Recent Developments and Future Perspectives, vol. 236. American Concrete Institute, Detroit (2008)

    Google Scholar 

  3. Halford, B.: Inorganic Menagerie 83, 30–33 (2005)

    Google Scholar 

  4. Tenne, R.: Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 1, 103–111 (2006)

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  5. Ciraci, S., Dag, S., Yildirim, T., Gülseren, O., Senger, R.T.: Functionalized carbon nanotubes and device applications. J. Phys-Condens. Mat. 16, R901–R960 (2004)

    CrossRef  ADS  CAS  Google Scholar 

  6. Sáez de Ibarra, Y., Gaitero, J.J., Erkizia, E., Campillo, I.: Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. In: Special Issue: Trends in Nanotechnology (TNT 2005), vol. 203, pp. 1076–1081 (2006)

    Google Scholar 

  7. Hall, C., Bosbach, D.: Scanning Probe Microscopy: A New View of the Mineral Surface. In: Skalny, J., Mindess, S. (eds.) Materials Science of Concrete VI, pp. 101–128. American Ceramic Society, Westerville (2001)

    Google Scholar 

  8. Love, C.A., Richardson, I.G., Brough, A.R.: Composition and structure of C–S–H in white Portland cement – 20% metakaolin pastes hydrated at 25°C. Cement Concrete Res. 37, 109–117 (2007)

    CrossRef  CAS  Google Scholar 

  9. Zhang, X., Chang, W., Zhang, T., Ong, C.K.: Nanostructure of Calcium Silicate Hydrate gels in cement paste. J. Am. Ceram. Soc. 83, 2600–2604 (2004)

    CrossRef  Google Scholar 

  10. Holzer, L., Muench, B., Wegmann, M., Gasser, P., Flatt, R.J.: FIB-nanotomography of particulate systems-Part I: Particle shape and topology of interfaces. J. Am. Ceram. Soc. 89, 2577–2585 (2006)

    CrossRef  CAS  Google Scholar 

  11. Constantinides, G., Ulm, F.-J.: The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cement Concrete Res. 34, 67–80 (2004)

    CrossRef  CAS  Google Scholar 

  12. Mondal, P., Shah, S.P., Marks, L.: A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials. Cement Concrete Res. 37, 1440–1444 (2007)

    CrossRef  CAS  Google Scholar 

  13. Hughes, J.J., Trtik, P.: Micro-mechanical properties of cement paste measured by depth-sensing nanoindentation: A preliminary correlation of physical properties with phase type. Mater. Charact. 53, 223–231 (2004)

    CrossRef  CAS  Google Scholar 

  14. Jennings, H.M., Thomas, J.J., Gevrenov, J.S., Constantinides, G., Ulm, F.-J.: A multi-technique investigation of the nanoporosity of cement paste. Cement Concrete Res. 37, 329–336 (2007)

    CrossRef  CAS  Google Scholar 

  15. Nemes, N.M., Neumann, D.A., Livingston, R.A.: States of water in hydrated C3S (tricalcium silicate) as a function of relative humidity. J. Mater. Res. 21, 2516–2523 (2006)

    CrossRef  ADS  CAS  Google Scholar 

  16. Allen, A.J., Thomas, J.J., Jennings, H.M.: Composition and density of nanoscale calcium–silicate–hydrate in cement. Nat. Mater. 6, 311–316 (2007)

    CrossRef  ADS  CAS  PubMed  Google Scholar 

  17. Schweitzer, J.S., Livingston, R.A., Rolfs, C., Becker, H.-W., Kubsky, S., Spillane, T., Castellote, M., de Viedm, P.G.: Nanoscale studies of cement chemistry with 15N resonance reaction analysis. Nucl. Instrum. Meth. B 241, 441–445 (2005)

    CrossRef  ADS  CAS  Google Scholar 

  18. Skibsteda, J., Hall, C.: Characterization of cement minerals, cements and their reaction products at the atomic and nano scales. Cement Concrete Res. 38, 205–225 (2008)

    CrossRef  CAS  Google Scholar 

  19. Dolado, J.S., Griebel, M., Hamaekers, J.: A molecular dynamic study of cementitious Calcium Silicate Hydrate (C–S–H) gels. J. Am. Ceram. Soc. 90, 3938–3942 (2007)

    CAS  Google Scholar 

  20. Kalinichev, A.G., Wang, J., Kirkpatrick, R.J.: Molecular dynamics modeling of the structure, dynamics and energetics of mineral–water interfaces: Application to cement materials. Cement Concrete Res. 37, 337–347 (2007)

    CrossRef  CAS  Google Scholar 

  21. Pellenq, R.J.-M., Lequeux, N., van Damme, H.: Engineering the bonding scheme in C–S–H: The iono-covalent framework. Cement Concrete 38, 159–174 (2008)

    CrossRef  CAS  Google Scholar 

  22. Martys, N.S., Lootens, D., George, W.L., Satterfield, S.G., Hebraud, P.: Spatial-Temporal Correlations at the Onset of Flow in Concentrated Suspensions. In: Co, A., Leal, L.G., Colby, R.H., Giacomin, A.J. (eds.) The XVth International Congress On Rheology. Monterey CA, AIP Conf. Proc., vol. 1027, pp. 207–209 (2008)

    Google Scholar 

  23. LAMMPS, http://lammps.sandia.gov/

  24. Bullard, J.W.: A determination of hydration mechanisms for tricalcium silicate using a kinetic cellular automaton model. J. Am. Ceram. Soc. 91, 2088–2097 (2008)

    CrossRef  CAS  Google Scholar 

  25. Bullard, J.W.: A three-dimensional microstructural model of reactions and transport in aqueous mineral systems. Model Simul. Mater. Sc. 15, 711–738 (2007)

    CrossRef  ADS  CAS  Google Scholar 

  26. Bentz, D.P., Garboczi, E.J., Bullard, J.W., Ferraris, C.F., Martys, N.S.: Virtual testing of cement and concrete. In: Lamond, J., Pielert, J. (eds.) Significance of tests and properties of concrete and concrete-making materials. ASTM STP 169D (2006)

    Google Scholar 

  27. Snyder, K.A., Marchand, J.: Effect of speciation on the apparent diffusion coefficient in nonreactive porous systems. Cement Concrete Res. 31, 1837–1845 (2001)

    CrossRef  CAS  Google Scholar 

  28. Bentz, D.P., Snyder, K.A., Cass, L.C., Peltz, M.A.: Doubling the service life of concrete structures. I: Reducing ion mobility using nanoscale viscosity modifiers. Cement Concrete Comp. 30, 674–678 (2008)

    CrossRef  CAS  Google Scholar 

  29. Bentz, D.P., Peltz, M.A., Snyder, K.A., Davis, J.M.: VERDiCT: viscosity enhancers reducing diffusion in concrete technology. Concrete Int. 31, 31–36 (2009)

    CAS  Google Scholar 

  30. Bentz, D.P., Jensen, O.M.: Mitigation strategies for autogenous shrinkage cracking. Cement Concrete Comp. 26, 677–685 (2004)

    CrossRef  CAS  Google Scholar 

  31. The Industrial-Academic Research Network on Cement and Concrete, http://www.nanocem.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garboczi, E.J. (2009). Concrete Nanoscience and Nanotechnology: Definitions and Applications. In: Bittnar, Z., Bartos, P.J.M., Němeček, J., Šmilauer, V., Zeman, J. (eds) Nanotechnology in Construction 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00980-8_9

Download citation