Skip to main content

Mortar and Concrete Reinforced with Nanomaterials

  • Conference paper

Abstract

In this work, several nanomaterials have been used in cementitious matrices: carbon nanofilaments (either multiwall nanotubes or nanofibers), nanosilica and nanoclays. The physico-chemical behavior of these nanomaterials at three different levels has been analyzed: cement paste, mortar and concrete. It has been determined the setting times, the workability, the mineralogical structure and the dispersion of the nanomaterials in the cement matrix by ESEM/EDX , the percentage of hydration by TGA and the mechanical properties of mortar and concrete at 3, 7, 28 and 56 days. It has been found that almost all the nanomaterials used in this study accelerate the hydration process (with a proper dispersion), obtaining reinforcements in compression and flexural strength at 3 and 7 days (between 20 and 40 %). At 28 days, it has been observed that carbon nanotubes and nanofibers exhibit a reinforcement in the flexural strength (more than 25%), due to their fibrilar structure. Reinforcements, either in compression or flexural strength, have been reached with nanosilica (between 20 and 40 %); indeed, pozzolanic activity has been confirmed with nanosilica.

Keywords

  • Compressive Strength
  • Flexural Strength
  • Silica Fume
  • Cement Paste
  • Carbon Nanofibers

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-00980-8_52
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   259.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-00980-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   329.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vittoria Diamanti, M., Ormellese, M., Pedeferri, M.: Characterization of photocatalyticnext term and superhydrophilic properties of mortars containing titanium dioxide. Cem. Concr. Res. 38, 1349–1353 (2008)

    CrossRef  CAS  Google Scholar 

  2. Ying Li, G., Ming Wang, P., Zhao, X.: Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Compos. 29, 377–382 (2007)

    CrossRef  CAS  Google Scholar 

  3. Chung, D.D.L.: Comparison of submicron-diameter carbon filaments and conventional carbon fibers as fillers in composite materials. Carbon 39, 1119–1125 (2001)

    CrossRef  CAS  Google Scholar 

  4. Campillo, I., Guerrero, A., Dolado, J.S., et al.: Improvement of initial mechanical strength by nanoalumina in belite cements. Mater. Lett. 61, 1889–1892 (2007)

    CrossRef  CAS  Google Scholar 

  5. Li, Z., Wang, H., He, S., et al.: Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater. Lett. 60, 356–359 (2006)

    CAS  Google Scholar 

  6. Li, H., Zhang, M.-h., Ou, J.-p.: Abrasion resistance of concrete containing nano-particles for pavement. Wear 260, 1262–1266 (2006)

    CrossRef  CAS  Google Scholar 

  7. Li, H., Zhang, M.-h., Ou, J.-p.: Flexural fatigue performance of concrete containing nano-particles for pavement. Int. J. Fatigue 29, 1292–1301 (2007)

    CrossRef  CAS  Google Scholar 

  8. Qing, Y., Zenan, Z., Deyu, K., et al.: Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr. Buildings Matt. 21, 539–545 (2007)

    CrossRef  Google Scholar 

  9. Tobón, J.I., Restrepo Baena, O.J., Payá Bernabeu, J.J.: Portland cement blended with nanoparticles. Dyna 152, 277–291 (2007)

    Google Scholar 

  10. Korpa, A., Kowald, T., Trettin, R.: Hydration behaviour, structure and morphology of hydration phases in advanced cement-based systems containing micro and nanoscale pozzolanic additives. Cem. Concr. Res. 38, 955–962 (2008)

    CrossRef  CAS  Google Scholar 

  11. Oberlin, A., Endo, M., Koyama, T.: Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth. 32, 335–349 (1976)

    CrossRef  ADS  CAS  Google Scholar 

  12. Baker, R.T.K., Barber, M.A., Harris, P.S., et al.: Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26, 51–62 (1972)

    CrossRef  CAS  Google Scholar 

  13. Martin-Gullon, I., Vera, J., Conesa, J.A., et al.: Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon 44, 1572–1580 (2006)

    CrossRef  CAS  Google Scholar 

  14. Ying Li, G., Ming Wang, P., Zhao, X.: Mechanical behaviour and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43, 1239–1245 (2005)

    CrossRef  CAS  Google Scholar 

  15. Vera-Agullo, J., Varela-Rizo, H., Conesa, J.A., et al.: Evidence for growth mechanism and helix-spiral cone structure of stacked-cup carbon nanofibers. Carbon 45, 2751–2758 (2007)

    CrossRef  CAS  Google Scholar 

  16. Rivera-Lozano, J.: Hidratación de pastas de cemento con adiciones activas, PhD, Universidad Autónoma de Madrid (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vera-Agullo, J. et al. (2009). Mortar and Concrete Reinforced with Nanomaterials. In: Bittnar, Z., Bartos, P.J.M., Němeček, J., Šmilauer, V., Zeman, J. (eds) Nanotechnology in Construction 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00980-8_52

Download citation