Skip to main content

Molecular Dynamics Approach for the Effect of Metal Coating on Single-Walled Carbon Nanotube

  • Conference paper
Nanotechnology in Construction 3

Abstract

The functionalized single-walled carbon nanotube (SWCNT) is focused lately, but there is no guarantee to keep its outstanding properties. In this paper the physical strength of a SWCNT is derived in terms of a stress-strain curve by molecular dynamics simulation. The breaking stress of a metal-coated SWCNT was lower than that of an uncoated SWCNT; however, the force constant increased by 17%, which can be attributed to the effect of the metal coating on the SWNCT. With regard to the rupture phenomena, it was observed that the uncoated SWCNT ruptured more easily than the metal-coated SWCNT at the rupture point. The rupture phenomenon was initiated by a local distortion of the metal atoms of the SWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  ADS  CAS  Google Scholar 

  2. Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Physics of carbon nanotubes. Carbon 33, 883–891 (1995)

    Article  CAS  Google Scholar 

  3. Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993)

    Article  ADS  CAS  Google Scholar 

  4. Thess, A., Lee, R., et al.: Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Ajayan, P.M., Lambert, J.M., et al.: Growth morphologies during cobalt-catalyzed single-shell carbon nanotube synthesis. Chem. Phys. Lett. 215, 509–517 (1993)

    Article  ADS  CAS  Google Scholar 

  6. Journet, C., Maser, W.K., et al.: Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–758 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Dal, H.J., Rinzler, A.G., et al.: Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 260, 471–475 (1996)

    Article  ADS  Google Scholar 

  8. Cheng, H.M., Li, F., et al.: Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem. Phys. Lett. 289, 602–610 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Kong, J., Cassel, A.M., Dai, H.J.: Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Hafner, J.H., Cheung, C.L., et al.: High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies. J. Phys. Chem. B 105, 743–746 (2001)

    Article  CAS  Google Scholar 

  11. Li, Y.M., Kim, W., et al.: Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105, 11424–11431 (2001)

    Article  CAS  Google Scholar 

  12. Zhang, Y.G., Chang, A., et al.: Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79, 3155–3157 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Maruyama, S., Kojima, R., et al.: Electric-field-directed growth of aligned single-walled carbon nanotubes. Chem. Phys. Lett. 360, 229–234 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Hata, K., Futaba, D.N., et al.: Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes. Science 306, 1362–1364 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Yudasaka, M., Yamada, R., Iijima, S.: Mechanism of the effect of NiCo, Ni and Co catalysts on the yield of single-wall carbon nanotubes formed by pulsed Nd: YAG laser ablation. J. Phys. Chem. B 103, 6224–6229 (1999)

    Article  CAS  Google Scholar 

  16. Kataura, H., Kumazawa, Y., et al.: Diameter control of single-walled carbon nanotubes. Carbon 38, 1691–1697 (2000)

    Article  CAS  Google Scholar 

  17. Dai, H.J., Rinzler, A.G., et al.: Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 260, 471–475 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Shibuta, Y., Maruyama, S.: Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method. Chem. Phys. Lett. 382, 381–386 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Ding, F., Rosen, A., Bolton, K.: Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth. J. Chem. Phys. 121, 2775–2779 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Fan, X., Buczko, R., et al.: Nucleation of single-walled carbon nanotubes. Phys. Rev. Lett. 91, 145501 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Yudasaka, M., Kasuya, Y., et al.: Causes of different catalytic activities of metals in formation of single-wall carbon nanotubes. Appl. Phys. A 74, 377–385 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Inoue, S., Kikuchi, Y.: Diameter control and growth mechanism of single-walled carbon nanotubes. Chem. Phys. Lett. 410, 209–212 (2005)

    Article  ADS  CAS  Google Scholar 

  23. Ishikawa, K., Duong, H.M., et al.: Extended abstracts ASME-JSME Thermal Eng. HT2007-32783 (2007)

    Google Scholar 

  24. Zhang, Y., Franklin, N.W., et al.: Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction. Chem. Phys. Lett. 331, 35–41 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films. Phys. Rev. B 42, 9458 (1990)

    Article  ADS  CAS  Google Scholar 

  26. Yamaguchi, Y., Maruyama, S.: A molecular dynamics simulation of the fullerene formation process. Chem. Phys. Lett. 286, 336–342 (1998)

    Article  ADS  CAS  Google Scholar 

  27. Shibuta, Y., Maruyama, S.: Bond-order potential for transition metal carbide cluster for the growth simulation of a single-walled carbon nanotube. Comput. Mat. Sci. 39, 842–848 (2007)

    Article  CAS  Google Scholar 

  28. Inoue, S., Matsumura, Y.: Molecular dynamics simulation of physical vapor deposition of metals onto a vertically aligned single-walled carbon nanotube surface. Carbon 46, 2046–2052 (2008)

    Article  CAS  Google Scholar 

  29. Agrawal, P.M., Sudalayandi, B.S., et al.: Molecular dynamics (MD) simulations of the dependence of C-C bond lengths and bond angles on the tensile strain in single-wall carbon nanotubes (SWCNT). Comput. Mat. Sci. 41, 450–456 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Inoue, S., Matsumura, Y. (2009). Molecular Dynamics Approach for the Effect of Metal Coating on Single-Walled Carbon Nanotube. In: Bittnar, Z., Bartos, P.J.M., Němeček, J., Šmilauer, V., Zeman, J. (eds) Nanotechnology in Construction 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00980-8_31

Download citation

Publish with us

Policies and ethics